Rapid, Economical, and Population-Protective Monitoring of Mold Disturbances in Hospitals and other Sensitive Environments.

AIHce 2005
May 23, 2005
David Kahane, MPH, CIH
And Colleagues
Forensic Analytical
www.forensica.com

Overview of Presentation

Introduction to Real Time PCR
The Problem
The Solution
- An Economical Approach to PCR: The Method
Case Studies
Summary

Q-PCR The Promise

- Does not require heavily trained mycologists for the identification
- Is an instrumental method, far more conducive to QA Procedures, traceability and defensibility
- Speciation of Penicillium/Aspergillus can be accomplished in a day
- Since loading of samples is not an issue as it is in direct microscopy methods, air sampling constraints are lifted
- Identification of a single selected species of interest is possible

Q-PCR - Determining Validity and Use

- Initial validation with EPA in 2002
 - Basic validation on Cladosporium species
- Initial In-house study in 2003
 - Basic Method Comparisons of Culturable, Non-Culturable and PCR
- Second In-house study in 2003-04
 - Precision and Accuracy Studies
- Optimization and Use by FA in 2004-05
 - Case Studies

Concerns in Hospitals

- Primary interest lies in the prevention of Aspergillosis disease related to mold disturbances in healthcare environments.
- Monitoring will be done during/after mold disturbances.
- Interested in:
 - Quantification of species of concern
 - Rapid turnaround time
 - Economical method

The Other Methods:

The Problems
Viable
- Require 7 - 10 days to grow
- May not grow at all.
- Impractical

Non-Viable
- Rapid method.
- Unable to differentiate among Pen/Asp species.
- Cannot quantify species that cause Nosocomial infection.

Q-PCR
- Have to pick what I want to look for, otherwise it can get costly
- Spore equivalents based on all genetic material, not just spores
- Optical microscopy and molecular genetics differ taxonomically

The Solution
Utilize combinations of non-viable and quantitative PCR analytical methods in a process that provides the most relevant results rapidly and economically.

Mold Investigation
- Visual Inspection:
 - Mold Growth
 - Dust accumulation
- To decide where to sample for what has been/will be disturbed.

The Method:
An Economical Approach to PCR
Collect Tape Lift and Bulk samples of mold growth

- Analyze the tape lift sample(s) utilizing non-viable technique.

- Based on non-viable tape lift results, select a focused panel of species and analyze bulk samples of mold growth or accumulated dust by PCR
 - An experienced microbiologist will be able to make suggestions when identifying Pen/Asp species

Non-viable Tape Lift

<table>
<thead>
<tr>
<th>Sample</th>
<th>Result</th>
<th>PCR Bulk Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape Lift</td>
<td>Non-viable</td>
<td>PCR Bulk Result</td>
</tr>
<tr>
<td>Tape Lift</td>
<td>PCR Result</td>
<td>PCR Bulk Result</td>
</tr>
</tbody>
</table>

PCR Bulk Results

Based on non-viable tape lift and PCR bulk results, select “marker” specie(s) to be monitored during construction/remediation/exposure assessment.

- Aspergillus
- Chaetomium
- Penicillium
- Stachybotrys

Choosing “Marker” specie(s) will also allow for the monitoring of the mold disturbances using the best (specific and economical) method(s) of analysis
- Non-viable airs
- PCR airs
- Both

- PCR with selected few species such as A. fumigatus and P. chrysogenum can be used.
- To save money, NVA with Stachybotrys species can be used
- But PCR can also be used with all 3 species.
Case Studies

AIHce 2005: Economical use of PCR

Q-PCR – Case 1: Hospital Setting

- Concerns during construction for:
 - Disturbance of mold growth.
 - Disturbance of accumulated dust.
 - Nosocomial infections in immunocompromised individuals.

- Monitor the disturbance using the best fit method(s)
 - NVA, PCR, or both

Q-PCR – Nosocomial Infections

- Aspergillosis - large spectrum of respiratory diseases caused by members of the genus Aspergillus
 - In immunocompromised individuals, invasive pulmonary infection, which may disseminate to other organs, including brain, skin and bone
 - Focus on preventing airborne exposure to various Aspergillus species.
 - PCR Panel for Preventing Aspergillosis*
 - Aspergillus flavus, fumigatus, terreus, versicolor, niger

*Other species may be added into panel based on facility’s infection history

Case 1 Finding: Hospital Exterior

- Visible water intrusion and mold growth found at exterior drywall of hospital building.
- Stachybotrys was the predominant species found in the mold growth.
- Non-Viable Air (NVA) analysis utilizing Stachybotrys as the marker was used for air clearance.

NV Tape Lift

PCR Bulk
Case 1 Finding: Hospital Interior

- Visible mold discovered on wallboard behind wainscot of hospital corridor.
- Took tape lift and bulk samples of mold growth.
- PCR panel chosen for bulk sample analysis based on tape lift results.
- Nosocomial panel also used due to hospital setting.

 NV Tape Lift PCR Bulk

Clearance - PCR-air

Q-PCR - Case 2: Biotech Setting

- Potable water leak
- No visible areas of mold growth on interior surfaces, however moisture testing led to a DT plan involving both wet and dry areas for comparison.
- After destructive investigation and moisture tests of space - Identified six areas with localized mold growth.
- Selection of panels in manner previously described.

Non-Loss Related

Loss Related
Q-PCR - Case 2 Findings and Decisions

- Using PCR-bulk the key indicator mold was found to be *P. chrysogenum*.
- Prior to remediation, affected and unaffected areas were characterized by NVA and PCR-air.
- Monitored remediation using PCR-air and indicator mold - *P. chrysogenum*.
- During remediation, other water leaks and mold sources identified, and species added to panel.
- Post-remediation, clearance of room using PCR-air - *P. chrysogenum* and other selected species used.
- PCR used throughout, for both the differentiation and long term (8-hr) sampling benefits.

Prior to remediation, affected and unaffected areas were characterized by NVA and PCR-air. During remediation, other water leaks and mold sources identified, and species added to panel. Post-remediation, clearance of room using PCR-air - *P. chrysogenum* and other selected species used. PCR used throughout, for both the differentiation and long term (8-hr) sampling benefits.

Clearance - PCR-air

- Outdoors - Very High
- ICU rooms - Very Low
- ICU corridor Med/Low
- Hospt. corridor - High
- ER - Medium
- Door to ICU
- Door to ER
- Door to outdoors

Levels of *A. Fumigatus*

** Patient Location

Q-PCR - Case 3 - The Patient Dies

- Of Aspergillosis - *A. Fumigatus* identified as the cause.
- No visible mold growth found in the patient’s room.
- However hospital focus is immediately on the room - Plans for quick isolation and demolition.
- A more extensive evaluation of airborne levels by PCR is undertaken for *A. fumigatus* with 24hr turnaround time.
- Pattern clearly indicated that airborne levels of *A. Fumigatus* highest outdoors and progressively lower as one moves to patient wings and rooms.
- Airborne levels suggest an entirely different course of action.

Summary: PCR Method

- Quick
- Specific
- Economical
 - Combining non-viable & PCR methods of bulk analysis
 - Choosing marker species for PCR air sampling analysis
Thank You!

www.forensica.com

Acknowledgements:
Terri Chen, MPH, Dan Cox, PhD, CIH, Melissa Piercey, MSc,
John Martinelli, CMC, CIAQM, Pete Kaminski