Change Management

Gerhard Knutson, PhD., CIH
Knutson Ventilation, Inc.
952-928-0195

Balanced Ventilation System

- A balanced industrial ventilation system is designed by calculating the static pressure losses in the duct system
- The system is designed without dampers
- Changes in the system require review of the design
The Problem

- Balanced industrial ventilation system
- After installation change occurs
 - The process changes
 - New or additional equipment
 - New source requiring additional hoods
 - Elimination of sources (remove hood)
 - PEL, TLV, or OEL changes
- How do you modify the system to accommodate the required changes
Considerations

- Transport velocity
 - Low – Deposition in duct
 - High – Abrasion and energy loss
- Duct construction (pressure class)
- Fan
 - Capacity
 - Construction (Class)
 - Motor Horsepower
- Air Cleaning Devices
 - Capacity and efficiency
 - EPA permits

Change Management

- All change proposals reviewed by the ventilation system Change Reviewer
 - Reformulations or change in raw materials
 - Minor equipment modifications (add or remove)
 - Operating condition changes (rate, speed, temp)
 - Air cleaning equipment
- Worker acceptance of Change Management
- Verification of changes
Project Controllability

- Major Project
 - Easy to control
 - Large investments
- Minor Project
 - Hard to control
 - “Local” budgets
 - Done before you know it

Change in Volumetric Flow

- Inlet or start up dampers
- Fan speed
 - Variable Frequency Drives
 - Variable pitch pulleys
 - Belts and sheaves
Fan Laws

1. \(\frac{Q_1}{Q_2} = \frac{RPM_1}{RPM_2} \)
 First Fan Law

2. \(\left(\frac{RPM_1}{RPM_2} \right)^2 = \frac{SP_1}{SP_2} \)
 Second Fan Law

3. \(\left(\frac{RPM_1}{RPM_2} \right)^3 = \frac{HP_1}{HP_2} \)
 Third Fan Law
Example

- System design: 20,000 acfm at 10 "wg
- Measured: 18,000 acfm @ 12 "wg & 22 hp.
 - Need to restore volumetric flow to 20,000 acfm
 - What changes to the fan are needed if the fan is currently operating at 1460 rpm?
 - If the maximum safe speed of the fan is 1800 rpm, will the fan require replacement?
 - The motor is 30 hp. Will the motor require replacement?

Solution

- Q = 18,000 acfm at 1460 rpm
- RPM = 1460 * (20,000 / 18,000) = 1622 rpm
- SP = 12” * (20,000 / 18,000)^2 = 14.81 "wg
- HP = 22 * (20,000/18,000)^3 = 30.18 hp
Adding a Exhaust Point

- Duct Velocity
 - Conveying velocity in all branches
 - Velocity excessive (abrasion)
- Other hoods (Rob from Peter to pay Paul)
- Air cleaning equipment capacity, efficiency
- Fan capacity
- Motor and Power
Original System

Modified System
Result of No Review

- High Transport Velocity
 - Over 8000 fpm, Fan HP, Abrasion of duct
- Fan undersized
 - Unable to get volume and static pressure
 - Capture at hood decreased
 - Motor failure
- Dust collector performance
 - High air to cloth – Bag cleaning

Workable Solution
Removing a Hood

- Keep or save the exhaust volume
- Effect on other hoods
- Conveying velocity
Removing a Hood

- Simplest approach
 - Remove the hood
 - Add air bleed in
 - Damper (added resistance)
 - Orifice plate
 - Reestablish the baseline
- No change in airflow

Capped Duct

- Remove the hood and cap the duct
 - Airflow to all hoods change
 - Potential conveying problems
 - Total exhaust flow more than required – Energy consequences
Example

- Remove a machining hood at 1250 acfm
 - Conveying velocity lost in several branches
 - Duct and fan modifications require $25,000 to avoid settling and optimize the system
- Is it economical to make the change?

Solution

- System charges
 - 1250 acfm excessive
 - 3 horsepower (32 hp with bled in 29 hp when balanced)
- Fan energy
 - 3 hp = 3* 0.746 kW = 2.24kW
 - = 2.24kW*2000hr/shift * $ 0.12/kW
 - = $ 540/shift
 - = 50+ shift-year payback
Second Consideration

- Replacement air in building
 - Air conditioned
 - Cost per cfm/24-hours = $7.5/cfm
 - 24-7 operation (four shifts)
- Cost per year = $540*4 + $7.5*1250
 = $17,000
- Payback 18 months

Less Expensive Solution

- Bleed outside air instead of room air
- Modification
 - Exhaust - $1,500
 - Supply - $1,000
- Payback = ($2500/[7.5*1250])
 = 0.17 year or two months
General Approach

- Determine the necessary hood changes
- Rebalance the system
- Look to alternative changes for the system (minimize duct changes)
- Determine the operational costs
- Optimize the changes
 - Life cycle costs
 - Process interruption

Original Design
System Change

- Replace Bucket Elevator with disk conveyor
- Two exhaust take-off to be removed
 - 7a and 7b at 250 acfm each
 - Exhaust point 8 to be modified with exhaust increasing from 1200 acfm to 1700 acfm

Foundry – Hood Removal
Foundry – Modified Design

Solution

- Changes
 - Remove Hoods 7a and 7b
 - Remove duct 5-D, 7a-D, D-C and 8-E
- Result
 - New duct 5-C (90 percent of design)
 - New duct 8-E (113 percent of design)
General Approach

- Determine the necessary hood changes
- Rebalance the system
- Look to alternative changes for the system (minimize duct changes)
- Determine the operational costs
- Optimize the changes
 - Life cycle costs
 - Process interruption