Local Exhaust Ventilation Improvement Efforts at a Global Specialty Chemical Manufacturer

Richard Hirsh, MPH CIH
Rohm and Haas Company
rhirsh@rohmhaas.com
(510) 784-5728
Global Expectations and Requirements

- Global EHS Standard for Workplace Exposure Assessment and Control
- Global EHS Standard for Laboratory Hoods
| Health hazard controls are implemented when exposures are judged unacceptable. |
| Use hierarchy of controls strategy: engineering, administrative, and PPE as a last resort. |
| Hazard control measures instituted: |
| - When exposures exceed standards. |
| - When there is evidence of adverse health effects or significant employee discomfort below established limits. |
Workplace Exposure Assessment and Control Standard

- LEV selected as the ventilation system of choice where control of air contaminants is necessary.
- LEV systems must be inspected at least semi-annually.
- Exhaust air may not be recirculated.
- LEV inspections must be documented.
- All systems must be included in a preventive maintenance program.
Lab Hood Ventilation Specifications

- Lab hood must attain 0.5 m/s face velocity, with the sash open to its maximum position.
- If sash must be lowered to achieve target face velocity, permanent alterations must be made.
- Temporarily lowering the hood sash to attain target face velocity is not permitted.
ASHRAE Specification Alternative

- Allow use of ASHRAE tracer gas laboratory hood performance test.
- Once ASHRAE performance is demonstrated, an inspection program conforming to the standard, but using the lower face velocity specification, can be followed.
Laboratory Hood Standard - Other elements

- VAV hood requirements
- Room air balance
- No recirculation of exhaust air
- Stack location
- Initial and semi-annual inspections
- Annual inspection if hoods are equipped with flow or static pressure devices and audible low flow or low static pressure alarms.
Laboratory Hood Standard - Other elements

- Evaluate hoods after significant changes are made.
- Post hood inspection and test results, communicate to affected employees.
- PM program for hood fans, motors, and air cleaning devices.
- Maintain inspection records permanently.
- Train employees on good work practices.
One of the required Industrial Hygiene texts each site is expected to have on site.
Worldwide EHS Audits

- 3-year Audit Cycle
- Workplace Exposure Assessment and Control and Laboratory Hood standards audited each cycle
- Government Regulation Protocols
Manufacturing Excellence Efforts

- Assist sites and businesses to maximize asset utilization, optimize their processes, including EHS assessments.
- Develops tools and methods to help sites track equipment utilization, improve equipment reliability, reduce maintenance costs, inspect equipment, propose repairs, and recommend new designs.
Engineering Technical Center

- Industrial Ventilation Consulting
- Vent Collection System Design and Safety
- Engineering Standard 105-100 - Ventilation system design guide
Engineering Technical Center efforts

- Specifying new installation requirements
- Reviewing contractors proposals and designs
- Provide evaluations of existing systems
- Recommend balancing or measurement to determine existing conditions
Engineering Technical Center Recent Projects

- Site 1 - in Mexico - upgrading a deficient system
 - collection system - location and air flows
 - exhaust system - exhaust through carbon filter was discharged at grade.
- Site 2 - in the US - guiding the design of new LEV for ~30 process operations.
Training

- Training programs
 - Fundamentals of IH Course – offered annually include ventilation design and measurement
 - Classroom
 - IH Survey practical hands-on training
 - Jeff Burton Industrial Ventilation course – for EHS personnel and Engineers
 - IH Surveys/Training at individual sites
Ventilation Web page

- LEV guidelines
- Ventilation equipment vendors
- Example installations
- Ventilation Survey Forms
- Example Survey Reports
- Other support references
- Ventilation equipment recommendations

Local Exhaust Ventilation Guidelines

Global EHS
Industrial Hygiene Department

ROHM AND HAAS COMPANY
June 20, 2002
EHS Review Process

- Design Stage
- Pre-Start-up
- Challenges: Plans vs Installation
 - Specs to Reality
 - Expertise of installation firms
To address LEV deficiencies globally due to improper selection, design, installation, and performance.

- Inadequate capture velocities to control contaminants
- Poorly designed hoods
- No transitions between different sized ducts
- Ninety degree branch duct entries
- Rain caps on stack
- Lab stacks redirected downward
- Use of plastic flex duct with internal articulating joints subject to chemical attack
Impact of LEV Deficiencies

- Ineffective engineering controls at drum charging stations and pack-out stations
- Requires employees and contractors to use respiratory protection for extended periods of time
- Reintrainment of contaminants in office areas, control rooms and laboratories.
LEV Problems Identified

- Inadequate designs proscribed for new facilities
- Inadequate EHS Reviews at the design stage and pre-start-up allowed deficient systems to be approved
- Inadequate supervision of system installation by contractors
- Additional capital spent by site to upgrade their systems in order to meet target velocities.
Improper Design or Installation?
Hood Design Problems

- History of repair problems
- Plastic Hoods not durable, break easily
- Internal articulation focus of chemical attack
- Cannot be easily inspected for corrosion, and repair work requires dismantling the entire apparatus
- Internal hardware and extensive flex duct increases turbulence thus reducing efficiency and velocity pressure
- Not appropriate for dry chemical weigh-up activities
Recommendations

- All LEV equipment specifications, designs, and installations must be included in formal gate check process before AR approvals.
- LEV systems should conform to company LEV guidelines
 - All exhaust stacks should be designed and installed as a stack within a stack design
 - Exhaust stacks should be positioned and directed away from air intakes
 - Articulating arms should involve external articulations and smooth metal ductwork
Several key beneficial features:

- better control of chemical vapors at the drum bung during charging
- better control of vapors from the contaminated lance
- better ergonomics associated with lance handling
- more efficient use of available local exhaust ventilation (less air volume needed)
Ventilated Drum Lance Installations

- Some positive results:
 - Monitoring results N.D. or very low when properly installed.
 - Less $ than installing a walk-in drum hood
 - Much smaller floor footprint than walk-in hood
 - Lowered the total airflow allowed for smaller, less expensive scrubber
 - Less nuisance odors while charging drums

- Installations have been successful and we have plans to install as standard design in 5 new facilities: France, India, Vietnam, Russia, Mexico, Thailand and China
Ventilated Drum Lance

Drum Vent use at Qingpu IER plant June 2005