Laboratory Evaluation to Reduce Respirable Crystalline Silica Dust When Cutting Concrete Roofing Tiles Using a Masonry Saw

LTJG Rebecca Valladares Carlo

National Institute for Occupational Safety and Health (NIOSH)
Outline of Presentation

- Silica exposure and project background
- Methodology
- Results
- Conclusions
- Discussion
Silica Exposure Facts

- Crystalline silica is classified as a potential occupational carcinogen by NIOSH and classified as an A2 Suspected Human Carcinogen by ACGIH

- An estimated 1.7 million U.S. workers are currently exposed to respirable crystalline silica (NIOSH 1991; Yereb, 2003)

- More than 250 U.S. workers will die from silicosis each year

- Roofers are exposed from 0.03-0.33 mg/m³ of respirable silica dust while cutting concrete roofing tiles (% silica ranged from 9.5-21.7%)

- Due to rapid industrial expansion in developing countries, overexposure to respirable crystalline silica is an international problem
Respirable Crystalline Silica Dust Enters and Impacts Your Body

Symptoms Include:
- Shortness of breath
- Lung disease
- Pulmonary problems
- Chronic or severe cough
- Chest pain
- Fatigue
- Fever
- Cyanosis or blue skin
Exposure Criteria

NIOSH (REL)
0.05 mg/m³ (TWA) for up to a 10-hr workday during a 40-hr workweek

ACGIH (TLV)
0.025 mg/m³ (TWA) for up to an 8-hr workday during a 40-hr workweek

OSHA General Industry Standard
PEL = 10 mg/m³
% Silica + 2

OSHA Construction Standard
PEL = 250 mppcf
% Silica + 5

Note: Apply a conversion factor of 0.1 mg/m³ per mppcf
Summary of 3 Health Hazard Evaluations conducted in Spring `03 and Fall `04

• General OSHA Standard for Respirable Silica
 – 74% of the TWA samples exceeded the PEL

• Construction OSHA Standard for Respirable Silica
 – 33% of the TWA samples exceeded the PEL

• NIOSH and ACGIH® Criteria
 – 87% of the respirable silica TWA’s were exceeding the REL and TLV
Case Study

• **Objective:**
 - Report effectiveness of a commercially available local exhaust ventilation system (LEV) and a water suppression system to reduce silica exposures
 - Estimate the impact of reducing air and water flow rates when operating a masonry saw

• **Experimental Design:**
 - LEV exhausted 500, 280, and 250 cfm
 - Water suppression system supplied 2, 1, 0.5, 0.35 gpm
 - No Control
Testing Chamber
Testing Laboratory
Masonry Saw
Sample Tiles
Water Suppression Results

<table>
<thead>
<tr>
<th>Tile</th>
<th>Water Flow Rate (GPM)</th>
<th>Number of Samples</th>
<th>Geometric Mean Respirable Dust (mg/m³)</th>
<th>Geo. Std. Dev.</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>0</td>
<td>8</td>
<td>49.7</td>
<td>1.04</td>
<td>_</td>
</tr>
<tr>
<td>Flat</td>
<td>0.35</td>
<td>4</td>
<td>1.28</td>
<td>1.06</td>
<td>97.4</td>
</tr>
<tr>
<td>Flat</td>
<td>0.5</td>
<td>4</td>
<td>0.98</td>
<td>1.07</td>
<td>98</td>
</tr>
<tr>
<td>Flat</td>
<td>1</td>
<td>4</td>
<td>0.67</td>
<td>1.30</td>
<td>98.7</td>
</tr>
<tr>
<td>Flat</td>
<td>2</td>
<td>8</td>
<td>0.57</td>
<td>1.12</td>
<td>98.9</td>
</tr>
<tr>
<td>S-Shape</td>
<td>0</td>
<td>8</td>
<td>39.2</td>
<td>1.04</td>
<td>_</td>
</tr>
<tr>
<td>S-Shape</td>
<td>0.35</td>
<td>4</td>
<td>0.88</td>
<td>1.08</td>
<td>97.8</td>
</tr>
<tr>
<td>S-Shape</td>
<td>0.5</td>
<td>4</td>
<td>0.71</td>
<td>1.08</td>
<td>98.2</td>
</tr>
<tr>
<td>S-Shape</td>
<td>1</td>
<td>4</td>
<td>0.49</td>
<td>1.08</td>
<td>98.8</td>
</tr>
<tr>
<td>S-Shape</td>
<td>2</td>
<td>8</td>
<td>0.36</td>
<td>1.20</td>
<td>99.1</td>
</tr>
</tbody>
</table>
Local Exhaust Ventilation Results

<table>
<thead>
<tr>
<th>Tile</th>
<th>Air Flow Rate (CFM)</th>
<th>Number of Samples</th>
<th>Geometric Mean Respirable Dust (mg/m³)</th>
<th>Geo Std. Dev.</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>0</td>
<td>4</td>
<td>49.7</td>
<td>1.04</td>
<td>_</td>
</tr>
<tr>
<td>Flat</td>
<td>250</td>
<td>3</td>
<td>6.48</td>
<td>1.23</td>
<td>87</td>
</tr>
<tr>
<td>Flat</td>
<td>280</td>
<td>4</td>
<td>6.32</td>
<td>1.18</td>
<td>87.3</td>
</tr>
<tr>
<td>Flat</td>
<td>500</td>
<td>8</td>
<td>4.32</td>
<td>1.17</td>
<td>91.3</td>
</tr>
<tr>
<td>S-Shape</td>
<td>0</td>
<td>4</td>
<td>39.2</td>
<td>1.04</td>
<td>_</td>
</tr>
<tr>
<td>S-Shape</td>
<td>250</td>
<td>3</td>
<td>9.90</td>
<td>1.14</td>
<td>74.8</td>
</tr>
<tr>
<td>S-Shape</td>
<td>280</td>
<td>4</td>
<td>8.37</td>
<td>1.03</td>
<td>78.7</td>
</tr>
<tr>
<td>S-Shape</td>
<td>500</td>
<td>8</td>
<td>5.42</td>
<td>1.21</td>
<td>86.2</td>
</tr>
</tbody>
</table>
Water Suppression (95% Confidence Interval)

Respirable Dust Concentration (mg/m³) vs Water Flow Rate (GPM)

- Blue bars: flat
- Red bars: s-shape
Local Exhaust Ventilation (95% Confidence Interval)

Respirable Dust Concentration (mg/m³)

Flow Rate (CFM)

- 250
- 280
- 500

- flat
- s-shape
Variance and Tukey Multiple Comparison Results

• LEV control

 S-shape tile has a significant higher mean concentration than the flat shape tile

 500 CFM has a significantly lower mean concentration than 280 or 250

• Water suppression

 Flat shape has a higher mean concentration level than s-shape

 Statistically significant differences were found among all water flow rates
Water is better at controlling respirable dust

Caveats for Water Suppression

- Water source and disposal requirements
- Surface discolorations
- Clean-up
- Slips and falls
Summary & Conclusions

- Water control reduced respirable dust by approximately 97.4% for both flat and s-shape tiles
- LEV control reduced respirable dust from 87.0-91.3% for flat tiles and 74.8-86.2% for s-shape tiles
- Engineering controls are available; however precautions must me taken to choose the best one
Acknowledgments

I would like to thank my co-workers who have helped me immensely during this study. They are:

Karl Sieber, PhD
Amy Feng
Jerry Kratzer

The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy
Questions???

Contact Information:
Rebecca V. Carlo
NIOSH; Cincinnati, OH
rcarlo@cdc.gov
513-841-4141