A Protocol for Establishing Accurate Boundary Condition Inputs to Contaminant Propagation Models

Dave Bailey

US Army Construction Engineering Research Lab
Issues

- CFD can provide detailed output, but requires detailed input – localized parameters
- Protocol for determination of leakage parameters for CB transport modeling that characterize entire building
- Measurement techniques for exterior and interior partitions and components that provide the necessary accuracy
Building Air Leakage

- Unintentional airflow
 - exterior envelope
 - interior partitions

- Leak sources
 - joints in materials/assemblies
 - penetrations

Building Component Air Leakage

<table>
<thead>
<tr>
<th></th>
<th>Units (see note)</th>
<th>Best Estimate</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling General</td>
<td>in²/ft²</td>
<td>0.026</td>
<td>0.011</td>
<td>0.04</td>
</tr>
<tr>
<td>Drop</td>
<td>in²/ft²</td>
<td>0.0027</td>
<td>0.00066</td>
<td>0.003</td>
</tr>
<tr>
<td>Ceiling penetrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole-house fans</td>
<td>in² ea</td>
<td>3.1</td>
<td>0.25</td>
<td>3.3</td>
</tr>
<tr>
<td>Recessed lights</td>
<td>in² ea</td>
<td>1.6</td>
<td>0.23</td>
<td>3.3</td>
</tr>
<tr>
<td>Ceiling/Flue vent</td>
<td>in² ea</td>
<td>4.8</td>
<td>4.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Surface-mounted lights</td>
<td>in² ea</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimney</td>
<td>in² ea</td>
<td>4.5</td>
<td>3.3</td>
<td>5.6</td>
</tr>
<tr>
<td>Crawl space</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General (area for exposed wall)</td>
<td>in²/ft²</td>
<td>0.144</td>
<td>0.1</td>
<td>0.24</td>
</tr>
<tr>
<td>8 in. by 16 in. vents</td>
<td>in² ea</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>in² ea</td>
<td>1.9</td>
<td>0.37</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piping/Plumbing/Wiring penetrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncaulked</td>
<td>in² ea</td>
<td>0.9</td>
<td>0.31</td>
<td>3.7</td>
</tr>
<tr>
<td>Caulked</td>
<td>in² ea</td>
<td>0.3</td>
<td>0.16</td>
<td>0.3</td>
</tr>
<tr>
<td>Vents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathroom with damper closed</td>
<td>in² ea</td>
<td>1.6</td>
<td>0.39</td>
<td>3.1</td>
</tr>
<tr>
<td>Bathroom with damper open</td>
<td>in² ea</td>
<td>3.1</td>
<td>0.95</td>
<td>3.4</td>
</tr>
<tr>
<td>Dryer with damper</td>
<td>in² ea</td>
<td>0.46</td>
<td>0.45</td>
<td>1.1</td>
</tr>
<tr>
<td>Dryer without damper</td>
<td>in² ea</td>
<td>2.3</td>
<td>1.9</td>
<td>5.3</td>
</tr>
<tr>
<td>Kitchen with damper open</td>
<td>in² ea</td>
<td>6.2</td>
<td>2.2</td>
<td>11</td>
</tr>
<tr>
<td>Kitchen with damper closed</td>
<td>in² ea</td>
<td>0.8</td>
<td>0.16</td>
<td>1.1</td>
</tr>
<tr>
<td>Kitchen with tight gasket</td>
<td>in² ea</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls (exterior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast-in-place concrete</td>
<td>in²/ft³</td>
<td>0.007</td>
<td>0.0007</td>
<td>0.026</td>
</tr>
<tr>
<td>Clay brick cavity wall, finished</td>
<td>in²/ft³</td>
<td>0.0098</td>
<td>0.0007</td>
<td>0.033</td>
</tr>
</tbody>
</table>

Air Leakage Measurements/Techniques

• Historical motivation
 – Energy, building comfort, mold
 – Improvements in design/construction
 – Assess remedial actions

• Fan pressurization
 – Scale (whole building, zones, components)
 – Accommodates different of weather conditions
 – Provides leakage vs. pressure relationship \(Q = C \cdot \Delta P^n \)

• Tracer gas dilution
 – Scale (single zone)
 – Results valid for ambient conditions during test
Whole Building Pressurization

- Single Zone
 - ASTM E779
 - CGSB 149.10
 - CGSB 149.15 (HVAC)

\[Q = C \Delta p^n \]
Small-Scale Fan Pressurization - Building Components

- Standardized tests
 - Laboratory
 - ASTM E 283
 - Field
 - ASTM E 783
- Research methods
 - NRC Canada
 - Technical Research Centre Finland

Air Leakage Measurements for Establishing CFD Boundary Conditions

- Several laboratory and field techniques to draw from
- No existing methodology for characterizing localized leakage parameters for a whole building
- Individual comprehensive component testing would be tedious, resource intensive, and in some cases impractical
CFD Benchmarking Facility

- Existing Classroom – Administration
 - two storeys
 - 26,000 s.f.
- Physical description
 - HVAC
 - 3 AHUS, 22 VAV boxes
 - Return air plenum
 - Construction
 - Brick masonry cladding
 - Interior walls - painted gypsum board
 - EPDM membrane roof
 - Poured concrete floors
Establishment of Boundary Condition
Inputs for Envelope Air Flow

- Stage 1 – Conduct Preliminary Site Investigations
- Stage 2 – Perform Building Leakage Measurements
- Stage 3 – Develop Leakage Parameters for Zones, Interfaces and Components
Preliminary Investigations

- Review as-builts
- Visual inspection
- Single zone fan pressurization tests
 - masking envelope components
Preliminary Investigations

• Diagnostic surveys
 – IR
 – smoke
Preliminary Investigations

- Good overall design and construction
- Overall leakage of protective zone
 \[Q_{50} = 9500 \text{ cfm,} \]
 \[\text{ELA}_{(4\text{Pa})} = 540 \text{ in.}^2 \text{ (LBL)} \]
 \[\text{ACH} = 1.6 \]

Airflow at 50 Pascals
- 9018 CFM (± 0.6 %)

Leakage Areas
- 1070.6 in² (± 2.4 %) Canadian EqLa @ 10 Pa
- 594.2 in² (± 3.9 %) LBL ELA @ 4 Pa

Building Leakage Curve
- Flow Coefficient (C) = 908.3 (± 6.1 %)
- Exponent (n) = 0.603 (± 0.016)
- Correlation Coefficient = 0.99883
Building Leakage Measurements

Fan Pressurization - Guarded Zone

Measure Q_A and ΔP_A

$\Delta P_{AB} = 0$

$P_{ambient}$
Building Leakage Measurements

Upper Level

UC – Upper Classroom
UH – Upper Hallway
UL – Upper Lobby
UA – Upper Admin
NS – North Stairwell
SS – South Stairwell
WS – West Stairwell
Building Leakage Measurements

Lower Level

LC – Upper Classroom
LH – Upper Hallway
LA – Upper Admin
NS – North Stairwell
SS – South Stairwell
WS – West Stairwell
Building Leakage Measurements

Fan Pressurization Tests

Four site visits - 59 tests

- Whole building
- Primary zones
 - individual single zone
 - guarded zone
- Additional tests
 - stairwell doors
 - exterior doors
 - individual rooms
Building Leakage Measurements

Fan Pressurization Tests

<table>
<thead>
<tr>
<th>Description</th>
<th>Delta</th>
<th>P</th>
<th>C</th>
<th>n</th>
<th>Q50</th>
<th>ELA 4Pa*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Zone (PZ)</td>
<td>Neg.</td>
<td>796.5</td>
<td>0.633</td>
<td>9474</td>
<td>543</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>1295.1</td>
<td>0.601</td>
<td>13575</td>
<td>844.2</td>
<td></td>
</tr>
<tr>
<td>Upper Classrooms (balanced with PZ)</td>
<td>Neg.</td>
<td>246.3</td>
<td>0.496</td>
<td>1718</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>82.5</td>
<td>0.805</td>
<td>1927</td>
<td>71.5</td>
<td></td>
</tr>
<tr>
<td>Upper Classrooms (single zone)</td>
<td>Neg.</td>
<td>390.9</td>
<td>0.605</td>
<td>4169</td>
<td>256.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>439.4</td>
<td>0.602</td>
<td>4631</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>Upper Administration (balanced with PZ)</td>
<td>Neg.</td>
<td>163.6</td>
<td>0.597</td>
<td>1691</td>
<td>106.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>222.9</td>
<td>0.612</td>
<td>2438</td>
<td>147.5</td>
<td></td>
</tr>
<tr>
<td>Upper Administration (single zone)</td>
<td>Neg.</td>
<td>575.8</td>
<td>0.608</td>
<td>6201</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>572.7</td>
<td>0.612</td>
<td>6278</td>
<td>379.3</td>
<td></td>
</tr>
<tr>
<td>Lobby (balanced with PZ)</td>
<td>Neg.</td>
<td>53.4</td>
<td>0.59</td>
<td>536</td>
<td>34.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>47.2</td>
<td>0.675</td>
<td>662</td>
<td>34.1</td>
<td></td>
</tr>
<tr>
<td>Lobby (single zone)</td>
<td>Neg.</td>
<td>188.9</td>
<td>0.531</td>
<td>1507</td>
<td>111.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>176</td>
<td>0.548</td>
<td>1502</td>
<td>106.7</td>
<td></td>
</tr>
</tbody>
</table>

* LBL Method
Envelope Leakage – Whole Building

![Graph showing Envelope Leakage with Pressure Difference (Pa) on the x-axis and Leakage Flow (cfm) on the y-axis. The graph includes two lines: one for Negative Protection Zone (PZ) and one for Positive Protection Zone (PZ).]
Envelope Leakage - Individual Zones

- 5 Neg Envelope Lower Classrooms (LC)
- 7 Neg Envelope Upper Classrooms (UC)
- 10 Neg Envelope Upper Admin. (UA)
- 12 Neg Envelope Lower Admin. (LA)
- 14 Neg Envelope Lobby (UL)
Normalized Envelope Leakage - Individual Zones
Door Leakage – Upper North Stairwell

Negative Pressurization

- 17 Neg North Stairwell (NC)
- 17A Neg N. Stairwell - door undercut unsealed
- 17B Neg N. Stairwell - entire door unsealed

Positive Pressurization

- 17 Pos North Stairwell (NS)
- 17A Pos N. Stairwell - door undercut unsealed
- 17B Pos N. Stairwell - entire door unsealed

Door opens into Stairwell
Leakage Parameters

Delta P Measurements

• Baseline Conditions for CFD Model
 – Environmental
 – HVAC
 – Door/Window Status
• Measurement Locations
 – Interior (at plenum returns)
 4’ above floor
 2’ below underside of roof deck (center ht. of plenum
 – Exterior
 • 4’ above ground level
Leakage Parameters

Assumptions

- **Envelope Leakage**
 - 5540 cfm (baseline conditions)
 - 90% at roof-wall interface
 - 10% at floor-wall interface
 - Negligible leakage at windows
- **Isolated Plenum Areas** (no intentional air path)
 - Air flow uniform through drop-down ceiling tile
- **Interior Partition Leakage**
 - Negligible (interior doors open)
Model Envelope Leakage Parameters

<table>
<thead>
<tr>
<th></th>
<th>Q (cfm)</th>
<th>(\Delta P)</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Classroom B105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof-Wall</td>
<td>Q/ft = 2.77</td>
<td>(19.0) Pa</td>
<td>53’</td>
</tr>
<tr>
<td>Floor-Wall</td>
<td>Q/ft = 0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Classroom B104</td>
<td></td>
<td>(11.8) Pa</td>
<td></td>
</tr>
<tr>
<td>Roof-Wall</td>
<td>Q/ft = 7.26</td>
<td></td>
<td>111’</td>
</tr>
<tr>
<td>Floor-Wall</td>
<td>Q/ft = 0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Classroom Wing</td>
<td></td>
<td>(16.7) Pa</td>
<td></td>
</tr>
<tr>
<td>Roof-Wall</td>
<td>Q/ft = 3.25</td>
<td></td>
<td>220’</td>
</tr>
<tr>
<td>Floor-Wall</td>
<td>Q/ft = 0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Admin Wing</td>
<td></td>
<td>(12.2) Pa</td>
<td></td>
</tr>
<tr>
<td>Roof-Wall</td>
<td>Q/ft = 2.37</td>
<td></td>
<td>259’</td>
</tr>
<tr>
<td>Floor-Wall</td>
<td>Q/ft = 0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Admin Wing</td>
<td></td>
<td>(12.1) Pa</td>
<td></td>
</tr>
<tr>
<td>Roof-Wall</td>
<td>Q/ft = 4.88</td>
<td></td>
<td>189’</td>
</tr>
<tr>
<td>Floor-Wall</td>
<td>Q/ft = 0.49</td>
<td></td>
<td>211’</td>
</tr>
</tbody>
</table>

\(\Delta P \) is pressure difference across envelope
L is envelope perimeter length
Observations

• Selected field measurement methods are highly dependant on building characteristics
 – configuration/layout
 – HVAC Systems
• Sensitivity analyses will provide level of measurement accuracy
• Dynamics of HVAC system & environment need to be considered