Three-Dimensional CFD Simulation of Airflow and Contaminant Transport in Complex Buildings

Robert S. Bernard
Mario J. Sánchez
Phu V. Luong

ERDC Coastal and Hydraulics Laboratory
US Army Corps of Engineers
This work was conducted under an ongoing ERDC Project: “CB Protection of Facilities”

William J. Croisant, PhD
Project Leader

ERDC Construction Engineering Research Laboratory

US Army Corps of Engineers
PAR3D Numerical Model: Existing CFD Capabilities

- 3-D Incompressible Flow with Buoyancy
- Transport of Active & Passive Constituents
- Two-Equation ($k-\varepsilon$) Turbulence Modeling
- Multi-Zone Curvilinear Grids
- Parallel Processing
Eulerian Modeling Approach

- Contaminant concentrations are treated as continuous (transported) functions.

- Computed flow field produces dispersion through advective (convective) transport.

- Computed turbulence field produces dispersion through diffusive transport.

- Boundary & initial conditions determine the local rates of contaminant delivery.
Dispersion in a Hypothetical Five-Room Building with a Connecting Corridor
Building Dimensions in Plan View

Note: All dimensions are in feet.
Ceiling is 8 ft high.
Grid spacing is 1 ft.
5-ROOM BUILDING WITH CORRIDOR

RED => SUPPLY VENTS, 427 CFM EACH
GREEN => RETURN VENTS, 829 CFM EACH
BLUE => RETURN VENTS, 331 CFM EACH
PURPLE => OPEN CORRIDOR EXIT, 769 CFM OUTFLOW
YELLOW => OPEN CONNECTING DOORS

Note: All vents are in the ceiling.
Velocity Vectors 4 ft from Floor and Ceiling
Velocity Magnitude 4 ft from Floor and Ceiling
Contaminant Release Scenario for Five-Room Building:

- Contaminant is introduced impulsively in Room 4 with an initial concentration of unity.

- Contaminant is dispersed throughout the building via the steady-state flow created by a forced-air flow rate of 6400 cubic feet per minute (cfm).

- Contaminant is removed through the return vents and through the open corridor exit.
Concentration (at 2-min intervals) 4 ft from Floor
Contaminant Dispersion in an Existing Two-Story Multi-Room Building
TWO-STOREY BUILDING
LOWER LEVEL
Grid Layout for Plenum

- Supply Vent
- Return Vent
- Exhaust Vent
- VAV Box
TWO- Story Building

Upper Level
Floor Plan
Release Scenario for Two-Story Building

- Contaminant is released impulsively on the second floor.

- The mass released is 600 gm, concentrated initially in a 1-cubic-foot volume centered on the floor of the lobby.

- Contaminant is dispersed through the building by steady-state airflow (22,000 cfm) created by the HVAC system.

- Contaminant passes through the HVAC air handler (with 74% filtration) after which it is transported back to the rooms via the supply vents.
4 FT FROM FLOOR - IMPULSE RELEASE WITH FILTRATION

CONCENTRATION AT 00:00:00

UPPER GROUND LEVEL

LOWER GROUND LEVEL

CONCENTRATION

1.0

0.5

0.0
Advantages of 3-D CFD

• Provides greater local detail than two-dimensional simulations, which may be important for the placement of sensors.

• Best used for dispersion events of short duration (minutes to hours).

• Facilitates the development and study of rapid counter-measures.
Disadvantages of 3-D CFD

• Simulations may require hours (or days) of computer time.

• Input preparation (geometry and boundary conditions) may require months of effort for a multi-story building.

• Uncertainty concerning boundary conditions (and other details) may negate efforts to achieve predictive accuracy.
Practical Needs for 3-D CFD Simulation of Dispersion in Complex Buildings

• Automated translation of building features and dimensions into CFD model input

• Reliable characterization of airflow boundary conditions and other details

• Ready access to multi-processor supercomputers
For related work concerning the practical application of CFD to contaminant dispersion and detection in a building, see the report by J. J. Whicker et al.,

“Placement of Continuous Air Monitors in PF-4 Plutonium Laboratories: Consensus Findings and Recommendations”

Los Alamos National Laboratory Report LA-UR-00-2311