TIMED-RELATED DECAY IN VOC EMISSIONS FROM A HIGH PERFORMANCE IT PRODUCT:

IMPACT OF DECAY ON THE QUANTITATIVE ASSESSMENT OF POTENTIAL RISKS ASSOCIATED WITH PRODUCT EMISSIONS

American Industrial Hygiene Conference & Exposition
Philadelphia, Pennsylvania
June 6, 2007
HISTORY

- **Product stewardship program initiated 1989**
 - 18 months first test
 - 43 new products tested per year
 - > 300 products tested to date

- **Chambers**
 - 30 L, 667 L, 101 m³, 254 m³
 - Tedlar® - volume determination; permeation
HISTORY

Small Tedlar bag
HISTORY

30 L Chamber
HISTORY

667 L Chamber
HISTORY

101 m3 Chamber
HISTORY

254 m3 Chamber
HISTORY

- All IBM Products Qualified
 - Printers, servers, PCs, monitors, storage, kiosks

- Risk Assessments
 - Chemical emission rates measured in chamber
 - Determine compliance with internal & external standards
 - OSHA, ACGIH, Prop 65, cancer, chronic, acute, developmental effects
Finite amount of residual VOCs

Aim of study to quantitate decay

Procure high-end server for 120 days
METHODS

- **Chamber methods:**
METHODS

- Chamber methods (cont’d.):
 - Blue Angel: “Test Meth. For the Deter. Of Emiss. From Hardcopy Devices with respect to awarding the Environ. Label for Office Devices according to RAL-UZ 122; 2006 (http://www.blauer-engel.de/englisch)
METHODS

- **Air Sampling Methods for VOCs, aldehydes, O₃**
 - VOCs: U.S. EPA TO-1; Tenax TA®
 - Aldehydes: U.S. EPA TO-11A; SG + DNPH w/ O₃ denuder
 - Dasibi 1008 AH O₃ monitor – UV
METHODS

- Chamber Description
 - 101 m³
 - stainless steel
 - filtered supply air
 - digital recorders
 - samples collected in exhaust duct
 - SF₆ verify ventilation rate
 - Stored in 254 m³ chamber between tests
METHODS

- **Test Regimen**
 - Clean chamber; empty chamber background samples
 - Day 1: 0.5, 1, 2, 4, 8 hr.
 - Day 31, 65, 94 and 120
 - Triplicate Tenax TA® samples: 1, 2, 4 L
 - Single aldehyde samples
 - Supply air samples during testing
 - Field blanks & media blanks
METHODS

- Risk Assessment Methodology
- NAS 4-step framework (1983):
 - Hazard Identification
 - Dose-response Assessment
 - Exposure Assessment
 - Risk Characterization
METHODS

- **Chronic RA Exposure Assessment**
 - Assumes constant ER w/o decay (conservative)
 - Product end-of-life = ED

\[
ADEL_{nc} = \frac{RC \times ET \times EF \times ED}{AT}
\]

Where:
- \(ADEL_{nc} \) = Average Daily Exposure Level (µg/m\(^3\))
- \(RC \) = Average [room] (µg/m\(^3\))
- \(ET \) = Exposure time (hours / 24 hours)
- \(EF \) = Exposure frequency (days / 356 days)
- \(ED \) = Exposure duration (years = product life)
- \(AT \) = Averaging time (years)
Results

Chamber Temperature vs. Operating Day
8/19/03 - 12/15/03

Temperature, deg. F.

Operating Day
(Day 1 = August 19, 2003)
Results

Chamber Relative Humidity vs. Operating Day
8/19/03 - 12/15/03
Results

Chamber Static Pressure vs. Test Day
in. H2O
8/19/03 - 12/16/03

Static Pressure, in. H2O

Test Day

1 31 65 94 120
Results

Storage = 1.6 ACH
Results

Average Acetonitrile ER
ug/hr. vs. Day

ug/hr.

Day
Results

Average Benzaldehyde ER
ug/hr. vs. Day

Day

ug/hr.
Results

Average Ethylbenzene ug/hr. vs. Day
Results

Average Formaldehyde ug/hr. vs. Day

The graph shows the average formaldehyde concentration in ug/hr. over the course of different days. The concentration decreases significantly from day 1 to day 31, and then remains relatively stable until day 120.
Results

Average Styrene ug/hr. vs. Day

Day

ug/hr.

1 31 65 94 120

0 100 200 300 400 500 600
Results

Average Toluene ug/hr. vs. Day

Day

ug/hr.
System VOC + Aldehyde Time-Decay Emission Rates (µg/hour)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Day 1 ug/hr.</th>
<th>Day 31 ug/hr.</th>
<th>Day 65 ug/hr.</th>
<th>Day 94 ug/hr.</th>
<th>Day 120 ug/hr.</th>
<th>max. ug/hr.</th>
<th>min. ug/hr.</th>
<th>avg. ug/hr.</th>
<th>% decrease min. to max.</th>
<th>% decrease day 1 to day 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>0</td>
<td>23</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>45</td>
<td>0</td>
<td>14</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>120</td>
<td>4420</td>
<td>0</td>
<td>643</td>
<td>89</td>
<td>4420</td>
<td>0</td>
<td>1054</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>210</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>210</td>
<td>0</td>
<td>42</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1,3-Dichloro-2-propanol</td>
<td>8499</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8499</td>
<td>0</td>
<td>1700</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Epichlorohydrin</td>
<td>478</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>478</td>
<td>0</td>
<td>96</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>387</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>387</td>
<td>0</td>
<td>84</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2-Ethylhexanol</td>
<td>3468</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3468</td>
<td>0</td>
<td>694</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>4128</td>
<td>115</td>
<td>530</td>
<td>451</td>
<td>212</td>
<td>4128</td>
<td>115</td>
<td>1087</td>
<td>97</td>
<td>95</td>
</tr>
<tr>
<td>Furfural</td>
<td>295</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>295</td>
<td>0</td>
<td>59</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1-Hexanol</td>
<td>3325</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3325</td>
<td>0</td>
<td>665</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Isoprene</td>
<td>0</td>
<td>0</td>
<td>248</td>
<td>0</td>
<td>0</td>
<td>248</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>453</td>
<td>310</td>
<td>124</td>
<td>214</td>
<td>119</td>
<td>453</td>
<td>119</td>
<td>244</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>Pentadecane</td>
<td>6976</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6976</td>
<td>0</td>
<td>1395</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Pentanal</td>
<td>0</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>11</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Phenol</td>
<td>33322</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33322</td>
<td>0</td>
<td>6664</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Styrene</td>
<td>544</td>
<td>126</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>544</td>
<td>0</td>
<td>134</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Toluene</td>
<td>224</td>
<td>0</td>
<td>124</td>
<td>278</td>
<td>0</td>
<td>278</td>
<td>0</td>
<td>125</td>
<td>100</td>
<td>-24</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>o,m,&p-Xylenes</td>
<td>2557</td>
<td>92</td>
<td>45</td>
<td>169</td>
<td>297</td>
<td>2557</td>
<td>45</td>
<td>632</td>
<td>98</td>
<td>88</td>
</tr>
</tbody>
</table>
Results

Revised Chronic Non-cancer RA Equation:

\[
\text{ADEL}_{nc} = \frac{(RC_1 \times ET \times EF \times P_1) + (RC_2 \times ET \times EF \times P_2)}{AT}
\]

Where:

- \(\text{ADEL}_{nc} \) = Average Daily Exposure Level (µg/m³)
- \(RC_1 \) = max. room concentration during initial decay period (years)
- \(ET \) = Exposure time (hours / 24 hours)
- \(EF \) = Exposure frequency (days / 365 days)
- \(P_1 \) = duration of initial decay period (years)
- \(RC_2 \) = room concentration at end of decay period (years)
- \(P_2 \) = duration of product lifetime minus initial decay period (years)
- \(AT \) = Averaging time (years)
Thank You!

Questions?