Laboratory Animal Allergy
Mouse Urine Protein as an Indicator

John Schaefer, CIH,
Associate Director, Health Safety & Environment
Assistant Professor of Medicine
Assistant Professor of Environmental Health Science
LABORATORY ANIMAL ALLERGY (LAA)

- Significant Occupational Health Problem
- Approximately 2 million workers in the U.S. have jobs with routine contact with animals.
 - 33% of animal handlers will develop allergic symptoms
 - 10% of animal handlers will develop animal induced asthma

- 1998 NIOSH issued an Alert entitled:
 - Preventing Asthma in Animal Handlers DHHSNIOSH 97-116

- Using proper protective equipment
 - Gloves, Particulate respirators, Face shields
- Training for workers about animal allergies
- Modifying ventilation & filtration systems
- Providing health monitoring of exposed workers
LABORATORY ANIMAL ALLERGY (LAA)

- Classified as immediate hypersensitivity reactions or Type I
 - Involves production of Immunoglobulin E (IgE)
 - Forming a complex cascade of reactions leading to allergic inflammation

- Contact with animal allergens
 - Inhalation (Primary source)
 - Direct Skin contact
LABORATORY ANIMAL ALLERGY

- Onset can range from minutes to hours after exposure with mild to severely debilitating reactions
 - Skin
 - Hives
 - Rashes
 - Watery Eyes
 - Respiratory
 - Sneezing
 - Coughing
 - Wheezing
 - Asthma
ANIMAL POPULATION

- Johns Hopkins University
 - 90% of the animal population for JHU are Mice
 - Concern over allergen in laboratory animal facilities
 - Source
 - Urine-Major source due to persistent proteinuria
 - Hair
 - Dander
Mouse Urine Protein Study

Purpose

- Determine airborne concentrations of Mouse Urinary Protein (MUP) in close proximity to animal holding areas
- Determine the effectiveness of various types of engineering controls
- Determine what are the levels of MUP in various locations throughout the Institution
MOUSE URINARY PROTEIN
Particle Size

- Current literature reports that mouse allergens can reside on particles ranging
 - >0.5um to <10um
 - **Respirable**
 - Particles less than 10 microns are considered respirable.
 - Can easily enter the lower portion of the respiratory tract
 - More likely to cause an adverse effect.
 - Particles between 10-100 microns are trapped by the upper respiratory tract (nose, throat) and removed from body
 - Particles above 100 microns are not considered an inhalation risk.
ENGINEERING CONTROLS

● Containment
 - The animal holding area is negatively pressurized to the surrounding areas, preventing allergens from entering other areas
 - The animal cage is maintained under control ventilation to prevent release of allergen into the work area

● Engineering Control Data
 - Open Wire Cage
 - Micro Isolated Cage
 - Ventilated or Exhausted Rack
 - Integrated Cage Rack System
Engineering Controls Effectiveness

<table>
<thead>
<tr>
<th>Engineering Controls</th>
<th>Mean / range (MUP ng/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cage design</td>
<td></td>
</tr>
<tr>
<td>Wire top cage no controls</td>
<td>96.0 / 8.1 - 464.0</td>
</tr>
<tr>
<td>Cage with microisolator cover</td>
<td>2.6 / 0.2-12.2</td>
</tr>
<tr>
<td>Wire top cage on rack with negative exhaust</td>
<td>1.4 / 0.1-3.6</td>
</tr>
<tr>
<td>Cage with integrated supply and exhaust</td>
<td><0.1</td>
</tr>
<tr>
<td>Ventilation design</td>
<td></td>
</tr>
<tr>
<td>Older cage wash facility with limited ventilation</td>
<td>12.3 / 6.5-90.0</td>
</tr>
<tr>
<td>New cage wash facility with ventilation control</td>
<td>1.0 / 0.5-4.8</td>
</tr>
</tbody>
</table>
AIRBORNE CONCENTRATION RECOMMENDATIONS

- According to S. Gordon
 - Suggested risk of sensitization & development of symptoms to mice is increased MUP concentrations >5ng/m³

- Great Britain Recommendations
 - Exposure in Animal Work Area
 - <3ng/m³

- Johns Hopkins University/Department of HSE
 - Exposure in Non-Animal Work Area
 - <1ng/m³
<table>
<thead>
<tr>
<th>SITE</th>
<th>RANGE (MUP ng/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted employee Access</td>
<td>0.199-0.975</td>
</tr>
<tr>
<td>Animal Transportation Hallways-</td>
<td>0.452-2.78</td>
</tr>
<tr>
<td>General Service Hallways</td>
<td><0.05-0.05</td>
</tr>
<tr>
<td>General Service Hallways-</td>
<td><0.05-0.532</td>
</tr>
<tr>
<td>General Service Hallways-</td>
<td><0.05-0.172</td>
</tr>
<tr>
<td>Hallway Outside of Research Lab</td>
<td>0.0820-0.696</td>
</tr>
<tr>
<td>Service Elevator Stop-</td>
<td><0.05-0.340</td>
</tr>
<tr>
<td>General Office Area</td>
<td><0.05-0.05</td>
</tr>
<tr>
<td>Restricted Animal Holding Areas</td>
<td>0.2-2.8</td>
</tr>
</tbody>
</table>
SUMMARY

- Effective engineering controls with respect to the housing of mice can reduce exposure significantly (greater than 90%)
- Effective ventilation control can reduce exposure to those in common areas (corridors)
- Effective ventilation design can reduce worker exposure to Mouse Urine Protein while performing cage washing duties
The Johns Hopkins University
Center for Excellence in Healthcare Safety and Environmental Health
Contact Information

- John A. Schaefer
- E mail jas@jhmi.edu
- Phone 410 502 3025
Thank You

QUESTIONS ?