An Evaluation of Concrete Saw Blades for Noise Reduction

Susan Shepherd ScD, M. Abbas Virji ScD and Susan Woskie PhD CIH
University of Massachusetts Lowell

This study was funded by the National Institute for Occupational Safety and Health (NIOSH) through a grant to the Center to Protect Workers Rights (CPWR)
Noise exposure levels in construction

- Large equipment, but also hand held tools
- Concrete cutter: 105 dBA\(^1\)
- Cut-off saw: 98 – 102 dBA; peak: 118 dBA\(^2\)
- Gas saw, carbide blade: 95 dBA (5 ft.) est. source: 109 dBA\(^3\)

1. Methner etal. JOEH 15(11), 2000
2. OSH Service, Dept of Labor, New Zealand, 2002
3. Greenspan etal, Appl Occ Env Hyg, 10(1), 1995
Hearing Loss in Construction

- 90% of SMW ages 50-59 lost >30dB @ 4kHz (Byggahlsan study)\(^1\)
- 49% of 5000 construction workers studied by Workers Comp Bd of BC\(^1\)

1. Schneider et al. STAR Construction Health & Safety, 1995
Experimental Methods

- Personal noise dosimeter (Larson Davis 706 Type 2)
- 3 Area noise dosimeters
- 1 Sound level meter (Larson Davis Type 1) with octave band analysis
- 5 saw blades
- Reinforced concrete pipe
- Each worker uses all five blades (wet and dry)
- Personal dust exposures (Thermo pDR w/cyclone)
Factors contributing to noise

- Saw motor
- Blade
 - Configuration
 - Speed
 - Material
- Material being cut
- Work practice
- Environment
Concrete Chop Saws

- Gas powered circular saw used to cut concrete pipe, paving & curb stones, sidewalk
- Reduction of noise via blade design proposed
Saws

- Stihl TS 400: 4.4 HP
- Makita DPC 7311: 5.6 HP
- Partner K700: 4.8 HP
Saw motor noise

<table>
<thead>
<tr>
<th>Saw</th>
<th>dBZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stihl 400</td>
<td>87.4</td>
</tr>
<tr>
<td>Makita DPC 7311</td>
<td>91.7</td>
</tr>
<tr>
<td>Partner K700</td>
<td>NT</td>
</tr>
</tbody>
</table>

Test with SLM @ 16 in.
Octave Band Analysis
Stihl motor

![Octave Band Analysis Graph](image-url)
Five blades

1. Diamond regular
2. Carbide regular
3. Carbide “holes” blades
4. Carbide “turbo”
5. Diamond noise-reducing (NR)
Diamond Regular Blade

- 24 segments
- 13 7/8 in. diameter
- Gullet depth: 21 mm
- Gullet width: 3 mm – 7 mm
- Relief: 6 mm diameter
Carbide blade

- 24 segments
- 13 1/4 in. diameter
- Gullet depth: 15 mm
- Gullet width: 2 mm – 3 mm
- Relief: 5 mm diameter
Noise reducing diamond blade

- 24 segments
- 13 5/8 in. diameter
- Gullet depth: 25 mm
- Gullet width: 3 mm – 5 mm
- Relief: 6 mm diameter
- “Smileys”: 32 mm diam
Carbide Turbo Blade

- Unsegmented blade
- 13 3/8 in. diameter
- No gullets
- “teeth” space: 3 mm
Carbide “holes” blade

- 24 segments
- 13 7/8 in. diameter
- Gullet depth: 22 mm (10 mm x 15 mm)
- Gullet width: 3 mm – 6 mm
- Relief and holes: 6 mm diameter
Carbide “holes” blade

L_{eq}
Diamond Regular Blade

Graph showing the L eq levels for Left, Center, and Right positions.
Carbide Turbo Blade
Carbide Regular Blade
NR Diamond Blade
Noise Levels
Preliminary Results

<table>
<thead>
<tr>
<th></th>
<th>Free-running</th>
<th>Cutting concrete pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saw motor only (Stihl 400)</td>
<td>89 dBA</td>
<td>NA</td>
</tr>
<tr>
<td>Carbide Regular</td>
<td>107 dBA</td>
<td>105 dBA</td>
</tr>
<tr>
<td>Carbide Turbo</td>
<td>100 dBA</td>
<td>101 dBA</td>
</tr>
<tr>
<td>Carbide Hole Blade</td>
<td>110 dBA</td>
<td>104 dBA</td>
</tr>
<tr>
<td>Diamond Regular</td>
<td>113 dBA</td>
<td>106 dBA</td>
</tr>
</tbody>
</table>
Noise Levels by Blade

Personal Dosimeter (L_{Aeq})

<table>
<thead>
<tr>
<th>Blade Type</th>
<th>L_{Aeq} (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR diamond</td>
<td>105.8</td>
</tr>
<tr>
<td>Carbide regular</td>
<td>106.1</td>
</tr>
<tr>
<td>Turbo carbide</td>
<td>105.8</td>
</tr>
<tr>
<td>Carbide holes blade</td>
<td>105.1</td>
</tr>
<tr>
<td>Diamond regular</td>
<td>105.5</td>
</tr>
</tbody>
</table>

Not statistically different.
What is L_{Aeq}?

$$L_{eq} = 10 \log_{10} \left(\frac{1}{T} \int_{T_1}^{T_2} \frac{p^2(t)}{p_o^2} dt \right) dB$$

$P(t) =$ instantaneous frequency weighted (A or C), sound pressure in pascals

$P_0 =$ reference sound pressure, 20 µPa

$T =$ measurement period (Run Time or time history period, $T = T_2 - T_1$)
People

- Statistical difference between individual workers average L_{Aeq}.
- Due to problems with the saws, only 4 out of 15 people completed all 10 trials (range of n=3 to 10 per person)
- Four person: 105.0 dBA, 106.0 dBA, 107.5 dBA, and 102.0 dBA
- Overall range of L_{Aeq}: 97.8 dBA to 111.2 dBA
Octave Band Analysis
All blades - Stihl

Frequency, Hz

Person 1

dBZ

C. Reg
C. Hole
C. Turbo
D. Reg
D. NR
Work practices

- Dependent on saw maintenance
- Choke open
- Tightening blade (blade shim)
- Sawing direction
- Depth of cut
- Height of worker (vs. height of cutting)
- Position while cutting
Bystander exposure

- If Leq at 1.5 feet (operator ear) is 105 dBA:
 - 90 dBA is at 8 feet
 - 85 dBA is at 15 feet
- If Leq at the operator is 111 dBA:
 - 90 dBA is at 16 feet
 - 85 dBA is at 29 feet
- Not considering reverberation in a concrete building site
Administrative Controls

- A 105 dBA task:
 - can be performed for one hour and still be under the 90 dBA TWA
 - Requires hearing protection with an NRR of 44
Conclusions

- Not ready to recommend a saw blade design to control noise
- Saw maintenance is important to blade stability, which may help to control noise
- Hearing protection for all workers in the area is necessary.
Further work

- Look more closely at work practices that may decrease noise exposure
- Relate rpm measurements to noise output