Application of Novel Local Exhaust Ventilation Devices to Control Bioaerosols in Chest Clinics and During Patient Transport

Dr Samuel Yu, DEnv, CIH
Dr Joseph Kwan, DEnv, CIH

Safety and Environmental Protection Office
Hong Kong University of Science and Technology
Originated from 2003 SARS

- 1755 SARS infections in Hong Kong, 386 cases (22%) were healthcare workers
- Serious rethinking of collaboration between infection control and occupational hygiene
- Development of LEV prototypes based on well established IH and biosafety principles
Class I BSC

Source: Biosafety in Microbiological and Biomedical Laboratories, CDC-NIH, 1984 (1st ed), 2007 (5th ed)
“Enclosing Booth” in CDC TB Guidelines

FIGURE 2. An enclosing booth designed to sweep air past a patient with tuberculosis disease and collect the infectious droplet nuclei on a high efficiency particulate air (HEPA) filter.

FIGURE S3-1. An enclosing booth designed to sweep air past a patient who has active tuberculosis and entrap the infectious droplet nuclei in a high-efficiency particulate air (HEPA) filter.

Source: CDC Guidelines for Preventing the Transmission of *Mycobacterium tuberculosis* in Health-Care Settings (Facilities), 2005 (1994)
Patient Transport Outside of Healthcare Facility

Portable personal unit

Ambulance unit
Hospital Ward
Patient Transfer within Hospital
Bronchoscopy
Outpatient High-Risk Procedures

Sputum induction
Key Development Work in Collaboration with HCWs

- Field testing to verify effectiveness of LEV devices
 - Bioaerosol challenge test
- User survey to gauge acceptance of devices and collect feedback
- Refinement of design to better suit user
 - Booth surface disinfection study to reduce concern of contact infection risk, and to facilitate cleaning between patients
Field Testing Criteria and Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Criterion</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Velocity</td>
<td>>0.5 m/s</td>
<td>Passed</td>
</tr>
<tr>
<td>Airflow visualization</td>
<td>Smooth pattern</td>
<td>Passed</td>
</tr>
<tr>
<td>Aerosol Challenge of HEPA</td>
<td><0.03% penetration</td>
<td>Passed</td>
</tr>
<tr>
<td>Bioaerosol Challenge</td>
<td><10^-4 leakage</td>
<td>Details below</td>
</tr>
</tbody>
</table>
Bioaerosol Challenge

- *E. coli*T4 phage as surrogate
- Phage culture released by spray bottle to simulate respiratory release
- Petri dish with *E. coli* cells to sample by impactor
- Plaque formation quantifies phage numbers
Setup of Bioaerosol Challenge

- **A**: Access Hole A
- **B**: Access Hole B
- **C**: Access Hole C

- : Sampler inside booth
- : Sampler outside booth
- : Sprayer inside booth
Results of Bioaerosol Challenge (1)

Negative control

Plaques visible on bacterial lawn

Phage completely consumed bacterial lawn
Results of Bioaerosol Challenge (2)

<table>
<thead>
<tr>
<th>Access hole</th>
<th>Position</th>
<th>Ave plaques per m³ of air</th>
<th>Percent reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Inside</td>
<td>4873</td>
<td>99.27%</td>
</tr>
<tr>
<td></td>
<td>Outside</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Inside</td>
<td>92862</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td>Outside</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Inside</td>
<td>6489</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td>Outside</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
User Survey

- Patient and HCW questionnaires
- Three clinical settings selected for field trial of different LEV devices
 - Booths in chest and TB clinics
 - Hood for bronchoscopy in one hospital
 - Small tent for patient transfer in one hospital (volunteers)
- Largest data pool from 6 chest clinics where 100 HCWs & 350 patients responded
Chest Clinic HCW Survey Results (1)

- 90% willing to use booth again
- Increase to 100% when effectiveness is proven
- Reported 7-12% patients expressed discomfort or difficulty, leading to 3-7% stopping usage
- Main complaints: thermal comfort, communication difficulties
Majority considered booth
- Increased protection of HCWs
- Worthwhile to modify procedures
- Did not increase contact risk
- Increased workload
- Not easy to clean between patients
Chest Clinic Patient Survey
Results

- 95% willing to use booth again
- Increase to 97% when effectiveness is proven
- 6-7% reported feeling different or discomfort during usage
Surface Disinfection Study

- To ensure booth surface will not increase contact infection risk
- Use liquid disinfectant to wipe internal surface between patients
- Effect verified by bacterial culture introduced onto hood walls and subsequent sampling by RODAC plates
- Subsequent test on UVC disinfection
RODAC Plates Procedures

- Replicate Organism Detection and Counting
- Commonly used in microbiologic monitoring in food industry
- Less labor-intensive, recently demonstrated effective for assessing multidrug-resistant organisms in clinical setting
- *E. coli* culture used as surrogate
- Manually applied to surface followed by disinfection and RODAC sampling
RODAC Plates
Surface Disinfection Results

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell untreated</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cell + 75% Ethanol wipe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cell + 75% Ethanol without wipe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cell + 1:99 bleach wipe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cell + 1:99 bleach without wipe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cell + 1:49 bleach wipe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cell + 1:49 bleach without wipe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Further Surface Disinfection Study with UVC

- Use literature data on UVC dosage necessary to kill TB bacterium
- Design UVC light source to fit booth dimensions
- Determine optimal irradiation time period to ensure disinfection
- Verification by same RODAC procedures
- Ensure protection of HCWs from UVC
Surface Disinfection by UVC

Sample Descriptions
1,2,3: Positive control (i.e. no UVC irradiation)
4,5,6: UVC irradiation for 20 seconds
7,8,9: UVC irradiation for 3 minutes
Applying Bacterial Culture and Collecting RODAC Sample
Surface Disinfection by UVC

Results

<table>
<thead>
<tr>
<th></th>
<th>Average no. of cells on the Isobooth surface under UV irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E control</td>
</tr>
<tr>
<td>control</td>
<td>25</td>
</tr>
<tr>
<td>20s</td>
<td>15</td>
</tr>
<tr>
<td>3 min</td>
<td>10</td>
</tr>
</tbody>
</table>
Recap

- Field performance verification including bioaerosol challenge proved effectiveness of LEV in controlling airborne infectious agents
- User survey revealed acceptance of LEV device
- Contact infection risk of LEV device internal surface can be controlled by liquid disinfectant or UVC irradiation
Overall Lessons Learnt…

- LEV should and can be applied to clinical settings for control of airborne infectious agents
- Close collaboration among OH, IC and HCW critical to success:
 - education, demonstration, feedback, buy-in, field trial, survey, long-term support, continuous improvement
- OH and IC professionals should continue to collaborate closely
Acknowledgement

- Funding support from Research Fund for Control of Infectious Diseases through Hong Kong Hospital Authority (HA-NS-004)

- HKUST research team members:
 - Mr Stephen Tsu
 - Ms Winnie Fung

- Colleagues of Hospital Authority and Dept of Health Chest Clinics
Thank You!

Contact

samyu@ust.hk
joekwan@ust.hk