Retrospectively Evaluating Employee Exposures During an Accidental Chlorine Release Using Tracer Gas Technology

Prepared by
Rex W. Moore, CIH, CSP

Presented by
Michael T. Weeks, CIH
Boelter Associates, Inc.
Park Ridge, Illinois
847-685-9285
rmoore@boelterassociates.com
Alleged Exposure

- Semiconductor manufacturing facility

- Accidental chlorine release from “Dry Etch Tool” process exhaust pump discharge

- Pump in basement underwent maintenance
 - Exhaust ducting inadvertently not reconnected
 Alleged Exposure

- Process equipment started – 50 ccpm Cl\textsubscript{2} release for 30 seconds
 - Chlorine monitor activated/shut down process
 - Personnel on floor above evacuated

- Operator on floor above allegedly overcome
 - Taken to hospital; alleged permanent damage to health
 - Filed workers’ compensation claim
Tracer Gas Technology

- In use for over 30 years
 - Semiconductor industry developed standard in 1993 (F-15)

- Wide range of applications
 - Industrial hygiene
 - Environmental

- Excellent tool for recreating chemical release events
What is Tracer Gas Technology?

- The marking of air with a gas
- Monitoring for its presence and concentration
- Data useful in evaluating:
 - Various parameters of ventilation systems
 - Chemical migration patterns
- Numerous ASTM, ANSI, ASHRAE Standards
A Good Tracer Gas?

- Non-toxic
- Colorless and odorless
- Inert
- Not normally present in the environment?
Common Tracer Gases Used

- Carbon Dioxide (CO$_2$)
- Freons
- Helium
- Sulfur Hexafluoride (SF$_6$)
Semiconductor Industry
SEMI F-15 Test Method

- Simulation of an accidental chemical release
 - Prediction of employee exposures
- Industry Concerns-Equipment failures
 - Piping/processes using highly hazardous gases and vapor-laden gas streams under pressure
 - Arsine, chlorine, fluorides
SEMIF-15 Testing
Tracer Gas Test Method

- Chemical of Concern
 • Most Hazardous
Chemicals of Most Concern

<table>
<thead>
<tr>
<th>HPM</th>
<th>Concentration (Pc)</th>
<th>OEL<sup>(a)</sup> (ppb)</th>
<th>OEL/Pc Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>100%</td>
<td>25,000</td>
<td>250</td>
</tr>
<tr>
<td>Oxygen</td>
<td>NA</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>Ozone</td>
<td>28%</td>
<td>100</td>
<td>3.57</td>
</tr>
<tr>
<td>Argon</td>
<td>NA</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>Helium</td>
<td>NA</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>Water</td>
<td>NA</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>Nitrogen Trifluoride</td>
<td>100%</td>
<td>10,000</td>
<td>100</td>
</tr>
<tr>
<td>Boron Trichloride</td>
<td>100%</td>
<td>5,000</td>
<td>50</td>
</tr>
</tbody>
</table>

^(a) Source: Guide to Occupational Exposure Values – 2006. Compiled by the American Conference of Governmental Industrial Hygienists (ACGIH).
SEMIF-15 Testing
Tracer Gas Test Method

- Worst-case Injection Point
 - Usually fitting closest to an opening and fitting of highest pressure
SEMI F-15 Testing
Tracer Gas Test Method

- Injection Rate
 - Worst Possible Release
 - Formula for calculating release from pressurized line in F-15 Standard.
 - Most gas supply systems have flow control valves or orifices 2-3 times maximum process required.
SEMIMI F-15 Testing
Tracer Gas Test Method

- Measurement Location
 - Worst-case exposure
ERC = \frac{Q_p \cdot C_p \cdot T_m}{Q_t \cdot C_t}

- ERC = Equivalent Release Concentration
- \(Q_p \) = Worst-case release rate of process gas of concern
- \(Q_t \) = Tracer gas injection rate
- \(C_p \) = Concentration of process gas of concern in %
- \(C_t \) = Concentration of tracer gas of concern in %
- \(T_m \) = Concentration of level of SF\(_6\) at measurement location
Simulation Plan/Strategy

- Inject SF$_6$/nitrogen blend at discharge of process pump
 - Blend to have similar mole weight (MW) as chlorine gas
 - MW of 100% Cl$_2$ = 70
 - MW of 100% SF$_6$ = 146
 - MW of 100% N$_2$ = 28
 - Chosen blend
 - 40% SF$_6$ + 60% N$_2$ = 75
Simulation Plan/Strategy

- Start with 200 ccpm for 30 seconds and progressively increase injection duration
 - Record SF$_6$ levels at various locations at workstations on operating floor
 - For the different injection times
 - Breaks in between injection periods
- Maintain same facility ventilating conditions as day of incident.
Measurements Recorded

<table>
<thead>
<tr>
<th>Measurement Location</th>
<th>Max. $T_m^{(1)}$</th>
<th>OEL ppb$^{(2)}$</th>
<th>ERC ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location #1:</td>
<td>28.69</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Location #2</td>
<td>55.23</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Location #3:</td>
<td>29.01</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Location #4:</td>
<td>66</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Location #5</td>
<td>25.72</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Location #6:</td>
<td>32.62</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Location #7:</td>
<td>60.87</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

ERC = $Q_p \frac{C_p T_m}{Q_t C_t}$
Measurement Correction

<table>
<thead>
<tr>
<th>Measurement Location</th>
<th>Max. $T_m^{(1)}$</th>
<th>OEL ppb$^{(2)}$</th>
<th>ERC ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location #1</td>
<td>28.69</td>
<td>500</td>
<td>71.8</td>
</tr>
<tr>
<td>Location #2</td>
<td>55.23</td>
<td>500</td>
<td>138.1</td>
</tr>
<tr>
<td>Location #3</td>
<td>29.01</td>
<td>500</td>
<td>72.6</td>
</tr>
<tr>
<td>Location #4:</td>
<td>66</td>
<td>50</td>
<td>165</td>
</tr>
<tr>
<td>Location #5</td>
<td>25.72</td>
<td>500</td>
<td>64.3</td>
</tr>
<tr>
<td>Location #6</td>
<td>32.62</td>
<td>500</td>
<td>81.6</td>
</tr>
<tr>
<td>Location #7:</td>
<td>60.87</td>
<td>500</td>
<td>152.2</td>
</tr>
</tbody>
</table>

- ERC = $Q_p C_p T_m / Q_t C_t$

 = (100%) (200ccpm) T_m / (40%) (200ccpm)

 = 2.5 T_m
Conclusions

- Chlorine releases “Dry Etch Tool” on the Fab level
 - Larger release durations
 - During the alleged exposure incident
 - Resulted in employee exposures
 - Well below recognized exposure criteria levels