The Effect of Residential Endotoxin and Particulate Exposure on the Activity Levels of Asthmatic Children

Hernando Perez, PhD, MPH, CIH
Zekarias Berhane, PhD
Patrick Gurian, PhD
Terry Alexander
Mariana Chilton, PhD, MPH

Georgette Galbreth
Virginius Bragg
Overview

• Purpose
• Background
• Methods
• Results
• Conclusions
• Limitations
Purpose
• To evaluate the relationship between both dust endotoxin levels and airborne particulate count concentrations in the residential environment and activity limitation in asthmatic children
Background
Particulates and Asthma

- Airborne particulate exposure can exacerbate asthma (Lipsett et al, 1997)
 - Particle count and not mass best predicts ability to increase sensitization
- Penttinen et al (2001)
 - Peak expiratory flow most closely associated with particle count (0.1 -1 um)
Endotoxin and Asthma

• Significant associations have been observed in the residential environment in both children and adults (Michel et al, 1991, Michel et al, 1996; Rizzo et al, 1997)
Method
Participants

- 115 parents or guardians of asthmatic children under the age of seven residing in Section 8 Housing in Philadelphia
 - Goal to recruit minimum of 200
 - Phone recruitment through public housing roster information
Home visit

- Community Based Participatory Research (CBPR) model
- Surveys
- Visual Inspection
- Particle Sampling
- Dust Endotoxin Sample
Surveys

• Dietary Survey
 – Not analyzed in this portion of the research

• Children’s Health Survey for Asthma (CHSA)
 – American Academy of Pediatrics
 – Validated instrument (Asmussen et al, 1999)
 – Five Domains
 • Physical health (child), Activity (child and family), Emotional Health (child and family)
Visual Inspection

• Modified version of the EPA Asthma Home Environment Checklist (EPA 402-F-03-030) followed as guide
• Intervention delivered during inspection
Particle and Dust Sampling

- **Particle**
 - Fluke 983 Particle Counter (Fluke Corp., Everett, WA)

- **Dust endotoxin**
 - 1 square foot of child sleeping surface
 - 1 minute on a 25 mm endotoxin free polycarbonate filter loaded in three piece styrene cassette and maintained at approximately 4°C until analysis using the Standard LAL Kinetic System (Cambrex Corp., East Rutherford, NJ).
Results
Sampling Summary

<table>
<thead>
<tr>
<th>Variable</th>
<th>GM (GSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 um/liter</td>
<td>12137 (7.11)</td>
</tr>
<tr>
<td>0.5 um/liter</td>
<td>1200 (8.56)</td>
</tr>
<tr>
<td>1.0 um/liter</td>
<td>152 (6.58)</td>
</tr>
<tr>
<td>2.0 um/liter</td>
<td>100 (6.00)</td>
</tr>
<tr>
<td>5.0 um/liter</td>
<td>14 (5.92)</td>
</tr>
<tr>
<td>10.0 um/liter</td>
<td>4.3 (6.17)</td>
</tr>
<tr>
<td>EU/mg</td>
<td>1.3 (5.77)</td>
</tr>
</tbody>
</table>
Activity of Child---Individual Regression Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Beta</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-0.326</td>
<td>0.410</td>
</tr>
<tr>
<td>Humidity</td>
<td>0.260</td>
<td>0.116</td>
</tr>
<tr>
<td>ln 0.3 um/liter</td>
<td>-1.448</td>
<td>0.161</td>
</tr>
<tr>
<td>ln 0.5 um/liter</td>
<td>-0.840</td>
<td>0.376</td>
</tr>
<tr>
<td>ln 1.0 um/liter</td>
<td>-0.077</td>
<td>0.940</td>
</tr>
<tr>
<td>ln 2.0 um/liter</td>
<td>-0.324</td>
<td>0.765</td>
</tr>
<tr>
<td>ln 5.0 um/liter</td>
<td>-0.686</td>
<td>0.529</td>
</tr>
<tr>
<td>ln 10.0 um/liter</td>
<td>-1.046</td>
<td>0.326</td>
</tr>
<tr>
<td>ln EU/g</td>
<td>0.803</td>
<td>0.511</td>
</tr>
</tbody>
</table>
Activity of Child---Backwards Regression Final Model

<table>
<thead>
<tr>
<th>Variables in Model</th>
<th>Beta</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>0.438</td>
<td>0.022</td>
</tr>
<tr>
<td>ln 0.3 um/liter</td>
<td>-5.541</td>
<td>0.006</td>
</tr>
<tr>
<td>ln 1.0 um/liter</td>
<td>4.063</td>
<td>0.037</td>
</tr>
<tr>
<td>ln EU/g</td>
<td>2.119</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Overall p-value: 0.028
<table>
<thead>
<tr>
<th>Variable</th>
<th>Beta</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-0.094</td>
<td>0.010</td>
</tr>
<tr>
<td>Humidity</td>
<td>-0.040</td>
<td>0.009</td>
</tr>
<tr>
<td>ln 0.3 um/liter</td>
<td>0.223</td>
<td>0.020</td>
</tr>
<tr>
<td>ln 0.5 um/liter</td>
<td>0.198</td>
<td>0.024</td>
</tr>
<tr>
<td>ln 1.0 um/liter</td>
<td>0.186</td>
<td>0.052</td>
</tr>
<tr>
<td>ln 2.0 um/liter</td>
<td>0.175</td>
<td>0.083</td>
</tr>
<tr>
<td>ln 5.0 um/liter</td>
<td>0.195</td>
<td>0.054</td>
</tr>
<tr>
<td>ln 10.0 um/liter</td>
<td>0.193</td>
<td>0.051</td>
</tr>
</tbody>
</table>
In Endotoxin---Backwards Regression Final Model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Beta</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-0.075</td>
<td>0.044</td>
</tr>
<tr>
<td>Humidity</td>
<td>-0.032</td>
<td>0.042</td>
</tr>
<tr>
<td>ln 0.3 um/liter</td>
<td>0.265</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Overall p-value for model: <0.001
Particulates and Gas Stoves

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean without gas stove</th>
<th>Mean with gas stove</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln 0.3 um/liter</td>
<td>8.73</td>
<td>9.58</td>
<td>0.085</td>
</tr>
<tr>
<td>ln 0.5 um/liter</td>
<td>6.16</td>
<td>7.33</td>
<td>0.029</td>
</tr>
<tr>
<td>ln 1.0 um/liter</td>
<td>3.88</td>
<td>5.22</td>
<td>0.007</td>
</tr>
<tr>
<td>ln 2.0 um/liter</td>
<td>3.75</td>
<td>4.74</td>
<td>0.035</td>
</tr>
<tr>
<td>ln 5.0 um/liter</td>
<td>1.87</td>
<td>2.74</td>
<td>0.064</td>
</tr>
<tr>
<td>ln10.0 um/liter</td>
<td>0.76</td>
<td>1.56</td>
<td>0.092</td>
</tr>
<tr>
<td>ln EU /g</td>
<td>7.43</td>
<td>7.13</td>
<td>0.587</td>
</tr>
</tbody>
</table>
In 0.3 um particles by location

p-value: 0.010
In 0.5 um particles by location

p-value: 0.017
ln 1.0 um particles by location

p-value: <0.106
ln 2.0 um particles by location

p-value: 0.207
ln 5.0 um particles by location

p-value: 0.063
ln >10 um particles by location

p-value: 0.008
In EU/g by location

p-value: 0.059
ln 0.3 um particles by season

![Box plot showing ln 0.3 particle/liter by season with p-value < 0.001]
ln 0.5 um particles by season

p-value: <0.001
In 1.0 um particles by season

p-value: <0.001
ln 2.0 um particles by season

p-value: <0.001
ln 5.0 um particles by season

p-value: <0.001
ln >10 um particles by season

p-value: <0.001
ln EU/g by season

p-value: 0.105
Asthma Score by Location

p-value: 0.622
Asthma Scores by Season

p-value: 0.679
Conclusions

• Reinforces evidence from other studies that smaller particles are most harmful
• Particulate size fraction may contain information that can help us distinguish between more and less harmful environments
• Endotoxin is most strongly associated with smaller particles but does not correlate with health in this cross-sectional study
• Gas stoves appear to be an important source of indoor particulates
• Location effects may be strongest with the smallest particulates—these are most subject to long range transport (hence outdoor influence) but more detailed analysis needed.
Limitations

- Cross-sectional study may fail to identify effects of previous endotoxin exposures
References