Evaluation of Safety and Health Hazards, New Orleans Louisiana During Cleanup Operations, Hurricane Katrina 2005-2006

Dean Wingo, CIH, CSP
OSHA Area Director
Fort Worth, Texas

AIHCE 2007 Philadelphia, PA
Objectives

- Describe process of developing a coordinated Debris Management, Health and Safety, and IH sampling plans
- Present OSHA sampling data for debris management operations
Debris Management Plan

- Agency Coordination
 - USACE
 - LDEQ
 - EPA
 - OSHA
 - HHS
 - FEMA
 - Other State and Local
Waste Streams

- Green Waste
- C&D Waste
- Household Waste
Waste Streams

- White Goods and A/C Units
- Boats, Automobiles, Tires
- Household Hazardous Waste
- Universal Waste
- Mixed, Process or Listed Waste
Waste Streams

- Putrescibles
- Asbestos
Waste Streams

- Residual solids
Debris Operations

- Assessment
- Segregation
- Demolition
- Collection
- Reduction
 - Incineration by air curtain or open pit burning
 - Grinding and Chipping
 - Compaction
 - Recycling
- Disposal
Debris Operations – Assessment
Debris Operations – Segregation
Debris Operations – Demolition
Debris Operations – Demolition

[Images of debris operations and demolition scenes]
Debris Operations – Reduction
Debris Operations – Disposal
Challenges

- Large area
- Little infrastructure
- Changing debris stream
- Marsh and other water operations
- Limited landfill and other appropriate staging and disposal space
 - Formosan Termites
- Limited options for some reduction methods
Coordination of S&H Resources

- S&H provisions in contracts to prime contractors
- Coordinated HASPs and SAPs among federal agencies and contractors
- Daily meetings at operations level
 - Operations
 - Hazards
 - Injuries, illnesses, near-misses
 - Sample results
IH Sampling

- Integrated and direct-reading methods
- In depth and customized data collection to create historic database of information
 - GPS location
 - Work tasks
 - Debris stream
 - Controls
 - Engineering
 - Workpractice
 - PPE
- Data review to change frequency of sampling and needed controls
- No bio-sampling
IH Sampling - Agents

- Noise
- Vapors and Gases (25)
 - Freons
 - Sulfur dioxide
 - BTEX
 - Formaldehyde
 - Carbon Monoxide
 - Petroleum products
 - Gluteraldehyde
- Metals (15)
- Total and Respirable Dust
- PAHs
- Total fibers
- Fiberglass
- Asbestos
- Mercury
- Combustion products
- Silica
- Wood dust
- Combustible gas
- Oxygen
- Ionizing Radiation
OSHA Air and Noise Monitoring

❑ Summary results on website:

www.osha.gov/katrina/lisareports/katrinaresults.html
Evaluation of Sample Results

- Results are a TWA for time sampled not necessarily an 8-hr TWA
- Comparisons to OSHA 8-hr PEL or other appropriate OEL to determine hazardous tasks or “overexposures”
- Other “at risk” tasks identified when $AL < TWA < PEL$
Summary of Noise Dosimetry

<table>
<thead>
<tr>
<th>Total number of samples</th>
<th>Number of samples (% of total samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TWA ≥ 85 dBa</td>
</tr>
<tr>
<td></td>
<td>TWA ≥ 90 dBa</td>
</tr>
<tr>
<td>901</td>
<td>417 (46%)</td>
</tr>
<tr>
<td></td>
<td>141 (16%)</td>
</tr>
</tbody>
</table>
Noise – Highest Exposures

- Debris collection/removal
 - Heavy equipment operators
 - Industrial vacuum operators
 - Laborers
 - Chainsaw operators
 - Truck Drivers
 - Flaggers/Spotters
- Debris reduction
 - Chipping and grinding
- Site clearing/grading
Summary of Metal Samples

<table>
<thead>
<tr>
<th>Total number of samples</th>
<th>Number of samples (% of total samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Detected (ND)</td>
</tr>
<tr>
<td></td>
<td>3094 (97%)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Gas and Vapor Samples

<table>
<thead>
<tr>
<th>Total number of samples</th>
<th>Number of samples (% of total samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Detected (ND)</td>
</tr>
<tr>
<td></td>
<td>TWA < 0.5 x PEL</td>
</tr>
<tr>
<td></td>
<td>0.5 x PEL ≤ TWA < PEL</td>
</tr>
<tr>
<td></td>
<td>TWA ≥ PEL</td>
</tr>
<tr>
<td>1020</td>
<td>787 (77%)</td>
</tr>
<tr>
<td></td>
<td>175 (17%)</td>
</tr>
<tr>
<td></td>
<td>41 (4%)</td>
</tr>
<tr>
<td></td>
<td>17 (2%)</td>
</tr>
</tbody>
</table>
Gas and Vapors – Highest Exposures

- Carbon Monoxide
 - ~20% above AL
 - Building Inspections/Assessments
 - Saws
 - Burning

- Formaldehyde
 - ~20% above AL
 - Prefabricated trailer delivery and installation
Summary of Asbestos Samples

<table>
<thead>
<tr>
<th>Total number of samples</th>
<th>Number of samples (% of total samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Detected (ND)</td>
</tr>
<tr>
<td>652</td>
<td>626 (96%)</td>
</tr>
</tbody>
</table>

- TWA ≥ PEL: Total number of samples
- TWA ≤ PEL: Number of samples (% of total samples)
Asbestos – Highest Exposures

- Roof Removal

- Curbside collection of dry asbestos debris

- Awaiting results from large scale demolition work
Summary of Particulate Samples

<table>
<thead>
<tr>
<th>Total number of samples</th>
<th>Number of samples (% of total samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Detected (ND)</td>
</tr>
<tr>
<td>1278</td>
<td>89 (7%)</td>
</tr>
</tbody>
</table>
Particulates – Highest Exposures

- **Heavy equipment operators**
 - ~10% > PEL
 - ~30% > AL
- **Reduction and collection laborers**
 - ~5% > PEL
- **Spotters/Flaggers**
 - ~1% > PEL
Summary of Silica Samples

<table>
<thead>
<tr>
<th>Total number of samples</th>
<th>Non-Detected (ND)</th>
<th>TWA <0.5 x PEL</th>
<th>0.5 x PEL ≤ TWA < PEL</th>
<th>TWA ≥ PEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>82 (16%)</td>
<td>350 (68%)</td>
<td>29 (6%)</td>
<td>54 (10%)</td>
</tr>
</tbody>
</table>
Silica – Highest Exposures

- Heavy equipment operators
 - Concrete
 - Brick
 - Running over crushed debris

- Sawing and Grinding
 - ~70% > PEL
 - Contractors - Chipping and Grinding
Conclusions

- Communication and coordination key to successful safety and health program
 - Interagency and Contractors
 - All levels of operations

- IH monitoring helped identify areas and tasks of concern and validate controls
 - Changing waste stream
 - Engineering
 - Work practices
 - PPE