The case for culturable air sampling for opportunistic fungi during healthcare construction

AIHCE 2007, Philadelphia, PA
June 2007

Laurence Lee, CIH
Pacific Industrial Hygiene LLC
pacific.ih@comcast.net
425-269-1488
Introduction

Healthcare construction is a recognized risk factor for life-threatening infection from opportunistic fungi

• At risk patients
 – Cellular immune deficiencies
 – Cannot overcome everyday fungal exposure

• Opportunistic fungi
 – ~200: 50 common
 – *Aspergillus fumigatus, flavus, terreus, niger*
 – *Fusarium*
Introduction
Healthcare construction, infection control risk assessment (ICRA), & environmental monitoring

• Healthcare construction requires an ICRA
 – ICRA: How-to’s of dust control
 – Prevent at-risk patient exposure to opportunistic fungi

• Environmental monitoring
 – Verifies contractor ICRA compliance
 – Visual inspection, observation & moisture testing
 – Sampling & monitoring
Air sampling & monitoring

• No guidelines & discouraged by CDC

• Sampling & monitoring is “best practices”

• “Need for speed” favors
 – Laser particle counters
 – PCR air samples
 – Non-viable air samples

• “Need for speed” disfavors
 – Culturable air sampling
Air sampling & monitoring

• Each sampling & monitoring method has a purpose & limitations

• Cannot identify to species level

• Cannot determine viability or thermo-tolerance

Photo courtesy of the Aspergillus Website & Fungal Research Trust
Air sampling & monitoring

• Culturable air sampling addresses the limitation of the other sampling methods
 – Identifies opportunistic fungi to the species level
 – Determines viability
 – Determines thermotolerance

• Integral part of air sampling & monitoring plan
Culturable air sampling

• Determine species of interest
 – Consult with Infection Control Practitioner, Epidemiologist, or Infectious Disease Physician
 – Survey patient population

• Opportunistic species examples
 – Aspergillus
 – Fusarium
 – Curvularia
 – Coccidiodes immitis**
Culturable air sampling

• Consult with mycologist and determine appropriate media
 – Aspergillus species
 • Sabouraud dextrose + 0.1% chloramphenicol
 • Inhibitory mold agar
 • Malt extract
 • Czapek dox
 • Potato flake
 – 37°C for 7 days
Culturable air sampling

Select sampling method & sampler

- Filter method
 - 0.8 µm pore size polycarbonate or MCE filter
 - Culture on agar plate
 - Low or high volume air sampling pump
 - 500 – 1000(+) liter air sample
 - Reporting limit <1 to <2 CFU/m³
Culturable air sampling

Select sampling method & sampler

• Impactor
 – 2-3 µm spore size
 – <2 µm particle cut-off point

• Andersen, Aerotech N-6, SAS impactor
 – Single 500 – 1000(+) liter air sample
 – Serial/side by side sample collection (e.g. 7 – 3 minute samples)
 – Reporting limit <1 to <2 CFU/m³
Culturable air sampling

But what about

• Overloading?
 – Environment is
 • Highly-filtered (30% + 90% inpatient & diagnosis)
 • Frequently cleaned (terminal cleaning)
 • Outside air sample not relevant
Culturable air sampling

But what about . . .

• High volume sample & particle bounce?
 – Graesby Andersen – 30 minute maximum
 – SAS impactor
 • Lower flow rate
 • 500 liter sample
Culturable air sampling

But what about

• Incubation?
 – 37°C
 – 7 days
 – Check cultures at 1, 2, 3, 5 & 7 days

• Sampling plan?
 – Integrate your tool kit
 • Visual inspection & moisture measurements
 • Ventilation tubes
 • Particle counter
 • Culturable air sampling
Culturable air sampling

But what about

• Sampling plan?
 – Integrate your tool kit
 • Visual inspection & moisture measurements
 • Ventilation tubes
 • Particle counter
 • Culturable air sampling
Infection control commissioning

Purpose is to verify:

- Room/building pressure relationships
- Filter efficiency
- Terminal cleaning efficacy
- Acceptance for patient occupancy
Infection control commissioning

Room pressure relationships

• Ventilation tubes/micromanometer
 – Positively pressurized
 • Building ++ to outdoors
 • OR’s, protective environment, trauma room, procedure room, etc.
 – Negatively pressurized
 • Negative pressure rooms (e.g. ICU/TB)
 • Microbiology, autopsy, ER waiting room, etc.
Infection control commissioning

Filter efficiency

- Particle counter
 - Cumulative setting
 - 0.5 µm +
 - Outdoor & diffuser comparison (expected percent reduction in particles)
Infection control commissioning

Terminal cleaning efficiency

• Particle counter
 – Cumulative setting (0.5 µm +)
 – Experienced rule of thumb
 • 200 to 1,000 particles acceptable
Infection control commissioning

Terminal cleaning efficiency

• Culturable air sampling suggested criteria
 – *Aspergillus* species
 – 0-2 CFU/m3 - OK
 – 2-4 CFU/m3 – Reclean/test (w/patient)
 – 4-10 CFU/m3 – Reclean/test (remove patient)
 – >10 CFU/m3 – Reclean (remove patient & investigate)
Thank you

A. lentulus – Courtesy The Aspergillus Website and The Fungal Research Trust
Culturable air sampling successes

Orthopedic clinic

• 100 CFU/m³ A. fumigatus
Culturable air sampling successes

Emergency Department
• West wing cleared
• Center core - throughout
 – 2 to 10 CFU/m³ A. fumigatus
Culturable air sampling successes

Investigation

• Particle counts
 – 7,000 to 16,000

• Ventilation tubes
 – Core negative to adjacent spaces & outdoors
 – Construction and
Culturable air sampling successes

Atrium
- Compost
- Soil
- Wood chips
- Plants
Conclusion

Culturable air sampling

– Addresses non-culturable method limitations
 • Identifies opportunistic fungi at species level
 • Determines viability & thermotolerance

– Valuable tool in a hospital environmental monitoring plan