Analytical Methods for Beryllium

Kevin Ashley, Ph.D.

U.S. Department of Health and Human Services
Centers for Disease Control and Prevention
National Institute for Occupational Safety and Health
Cincinnati, Ohio
DISCLAIMERS:

Mention of company names or products does not constitute endorsement by the Centers for Disease Control and Prevention.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.
Introduction

Background:
- Applicable limit values
- Current state of the art / trace analysis
- Validated methods ensure defensibility of data

Sample Preparation & Analysis:
- Governmental & Consensus standard methods
- Available reference materials
- Standards & methods development activities

Summary:
- What is available now? Data gaps?
- What methods & standards are still needed?
Beryllium limit values

- DOE (10 CFR 850):
 - 0.2 µg/m³ Air contamination
 - 0.2 µg/100 cm² Surface contamination for equipment release
 - 3 µg/100 cm² Surface contamination for housekeeping

- OSHA Permissible Exposure Limit (PEL):
 - 2 µg/m³ Air contamination

- NIOSH Recommended Exposure Limit (REL):
 - 0.5 µg/m³ Air contamination

- ACGIH Threshold Limit Value® (TLV®) NIC:
 - 0.05 µg/m³ Air contamination (8-hr TWA)
 - 0.2 µg/m³ Air contamination (STEL)
Media for beryllium analysis:

Air samples (membrane filters)
Surface samples (e.g., wipes; vacuum):
 Hard / Smooth
 Soft / Rough
Dermal samples (e.g., wipes; patch)
Bulks (e.g., soils; thick dust deposits)
Salient standardized methods for beryllium sampling in workplace air

<table>
<thead>
<tr>
<th>Method(s)</th>
<th>Aerosol fraction(s)</th>
<th>Filter type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA (NIOSH & OSHA)</td>
<td>“Total”</td>
<td>Membrane</td>
</tr>
<tr>
<td>UK (HSE); Germany (BGIA)</td>
<td>Inhalable</td>
<td>Membrane</td>
</tr>
<tr>
<td>France (INRS)</td>
<td>Inhalable</td>
<td>Quartz filter</td>
</tr>
<tr>
<td>ISO 15202-1</td>
<td>Inhalable or Respirable</td>
<td>Membrane or Fibrous</td>
</tr>
<tr>
<td>ASTM Int’l: D7035; D7202</td>
<td>“Total”, Inhalable or Respirable</td>
<td>Membrane or Fibrous</td>
</tr>
</tbody>
</table>
Standardized Surface Sampling Methods

<table>
<thead>
<tr>
<th>Method(s)</th>
<th>Media / Device</th>
<th>Surface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSHA (several)</td>
<td>Wet or dry filter or wipe</td>
<td>Smooth / Hard; Dermal</td>
</tr>
<tr>
<td>NIOSH (several)</td>
<td>Wet wipe</td>
<td>Smooth; Dermal</td>
</tr>
<tr>
<td>ASTM D6966</td>
<td>Wet wipe</td>
<td>Smooth surfaces</td>
</tr>
<tr>
<td>ASTM E1216</td>
<td>Adhesive tape</td>
<td>Smooth surfaces</td>
</tr>
<tr>
<td>NIOSH & OSHA</td>
<td>Patch or Rinse</td>
<td>Dermal samples</td>
</tr>
<tr>
<td>ASTM D7296</td>
<td>Dry wipe (Be only)</td>
<td>Special substrates</td>
</tr>
<tr>
<td>ASTM D5438</td>
<td>Vacuum sampler</td>
<td>Carpets</td>
</tr>
<tr>
<td>ASTM D7144</td>
<td>Micro-vacuum</td>
<td>Rough, porous or fragile surfaces</td>
</tr>
</tbody>
</table>
Standardized sample preparation methods for beryllium

<table>
<thead>
<tr>
<th>Method</th>
<th>Matrix</th>
<th>Acids</th>
<th>Δ, ≈,)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOSH 7102</td>
<td>Air filter</td>
<td>HNO$_3$ / H$_2$SO$_4$</td>
<td>Δ</td>
</tr>
<tr>
<td>NIOSH 7300 / 7302</td>
<td>Air filter / Wipe</td>
<td>HNO$_3$ / HClO$_4$</td>
<td>Δ or ≈</td>
</tr>
<tr>
<td>OSHA ID-125G</td>
<td>Air filter, Wipe or Bulk</td>
<td>HNO$_3$ / H$_2$SO$_4$ / HCl</td>
<td>Δ</td>
</tr>
<tr>
<td>OSHA ID-206</td>
<td>Air filter, Wipe or Bulk</td>
<td>HCl / HNO$_3$</td>
<td>Δ</td>
</tr>
<tr>
<td>HSE 29/2 (UK)</td>
<td>Air filter</td>
<td>HNO$_3$ / H$_2$SO$_4$</td>
<td>Δ</td>
</tr>
<tr>
<td>INRS 003 (France)</td>
<td>Air filter</td>
<td>HNO$_3$ / HF</td>
<td>Δ or ≈</td>
</tr>
<tr>
<td>ASTM D7035</td>
<td>Air filter</td>
<td>Various options</td>
<td>Δ or ≈</td>
</tr>
<tr>
<td>ISO 15202-2</td>
<td>Air filter</td>
<td>Various options</td>
<td>Δ, ≈ or)))</td>
</tr>
</tbody>
</table>
Beryllium spectrometric analysis

Atomic spectrometry by:
- GFAAS (single element)
- ICP-AES (multielement)
- ICP-MS (ultratrace analysis)
Standardized methods for beryllium by spectrometric analysis

<table>
<thead>
<tr>
<th>Method(s)</th>
<th>Technique</th>
<th>MDL (µg Be)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOSH 7102</td>
<td>GFAAS</td>
<td>0.005</td>
</tr>
<tr>
<td>NIOSH 7300</td>
<td>ICP-AES</td>
<td>0.005</td>
</tr>
<tr>
<td>OSHA ID-125G; ID-206</td>
<td>ICP-AES</td>
<td>0.013; 0.0072</td>
</tr>
<tr>
<td>EPA 7091</td>
<td>GFAAS</td>
<td>0.005</td>
</tr>
<tr>
<td>EPA 200.7; 6010B</td>
<td>ICP-AES</td>
<td>0.008; 0.005</td>
</tr>
<tr>
<td>EPA 200.8; 6020</td>
<td>ICP-MS</td>
<td>0.001; 0.0005</td>
</tr>
<tr>
<td>ASTM D7035</td>
<td>ICP-AES</td>
<td>0.009</td>
</tr>
<tr>
<td>ISO 15202-3</td>
<td>ICP-AES</td>
<td>---</td>
</tr>
</tbody>
</table>
Voluntary consensus standard ICP-MS method for elements in workplace air:

- Under parallel development within ASTM International and ISO

- Interlaboratory study to evaluate ~20 elements (beryllium is one)

- Sample preparation procedures to include:
 - Hot plate digestion
 - Microwave digestion
 - Hot-block extraction
 - [Ultrasonic extraction an option]
Alternative dissolution solution for beryllium

Dilute aqueous ammonium bifluoride, \((NH_4)HF_2\):

- Less hazardous than concentrated acids (e.g., \(H_2SO_4\), HF)
- Effective for dissolving Be metal and BeO
- Does not dissolve matrix (filter or wipe)
- Heat (~85 °C) assists in dissolution of refractory “high-fired” BeO
Beryllium fluorescence method: fluorophore for trace detection

- Beryllium binds phenolate groups strongly
- A six member chelate ring provides ideal Be-O / Be-N stereochemistry

![Chemical structure of Hydroxybenzoquinoline sulfonic acid (HBQS)]
Beryllium fluorescence with HBQS

- Detection is quantitative above 0.036 ppb (<0.001 µg Be/sample)
- Linear response, wide dynamic range
- Verified lack of interference from other metals
Beryllium fluorescence method (1)

- Collect sample on media:
 - Surface wipe
 - Air filter

- Dissolve beryllium:
 - Dilute ammonium bifluoride
 - Heating block for BeO samples
 - Recovery >90% in ~30 min.
Beryllium fluorescence method (2)

- **Filter**
 - Commercial filter syringe

- **Mix**
 - Mix fluorescent dye and sample
 - (1:19 routine; 1:4 trace)

- **Measure**
 - Place cuvette in instrument
 - Measure [Be] to trace levels
Key advantages:
Beryllium-by-fluorescence method

- Field or laboratory deployable
- Detection limit <0.0003 µg Be/sample (0.011 ppb)
- Good recoveries from Be & BeO with (NH₄)HF₂
- Rapid turnaround (test results within one hour)
- High throughput (can process ~30 samples/90 minutes)
- Beryllium-specific (other metals do not interfere)
- Low capital cost (< $10,000)
- Quantification from <0.002 µg to >4 µg using portable fluorometer (5x / 20x dilution)

→ LOD for Be comparable to ICP-MS
Beryllium fluorescence method
acceptance:

- **ASTM International:**

- **CDC/NIOSH:**
 - NIOSH Manual of Analytical Methods (www.cdc.gov/niosh/nmam)
 - Methods 7704 (air) & 9110 (wipes)
Beryllium NIST SRMs

<table>
<thead>
<tr>
<th>SRM No.</th>
<th>Material</th>
<th>Certified [Be]</th>
</tr>
</thead>
<tbody>
<tr>
<td>458; 459; 460</td>
<td>Be-Cu alloy (chips)</td>
<td>0.360%; 1.82%; 1.86%</td>
</tr>
<tr>
<td>C1122</td>
<td>Be-Cu alloy (block)</td>
<td>1.75%</td>
</tr>
<tr>
<td>1632c</td>
<td>Bituminous coal</td>
<td>1.0 µg/g</td>
</tr>
<tr>
<td>1944</td>
<td>NY/NJ waterway sediment</td>
<td>1.6 µg/g</td>
</tr>
<tr>
<td>3105a</td>
<td>Single element standard solution</td>
<td>10 mg/L</td>
</tr>
<tr>
<td>4325</td>
<td>Be 10/9 MS standard solution</td>
<td>5 mg/L (Be 10/9 = 3×10^{-11})</td>
</tr>
</tbody>
</table>
Desired beryllium CRMs

Compound:

Beryllium Oxide (esp. high-fired)

- NIST/DOE/NIOSH BeO SRM project

Media:

Air filters (aerosols)

Spiked wipes

⇒ BeO-spiked filter CRMs are commercially available.
SEM of BeO on MCE filter*

*BeO-spiked filters courtesy of High-Purity Standards; SEM by J. Fernback, CDC/NIOSH
Analytical methods for Beryllium:

- Use of more sensitive methods than ICP-AES and GFAAS (i.e.: ICP-MS, fluorescence) may be required in near future
- Data gaps remain for Be recoveries from sampling media & sample prep protocols
- Reference materials lacking, but efforts to fill this need are underway

IHs & labs should harmonize sampling & analysis procedures!
Acknowledgments

Anoop Agrawal, Berylliant, Inc.
Mike Brisson, Washington Savannah River Co.
Alan Howe, Health & Safety Laboratory (UK)
Mark McCleskey, Los Alamos National Laboratory
Kenn White, AIHA Fellow

- Beryllium Health & Safety Committee, Sampling & Analytical Subcommittee
- ASTM International Subcommittee D22.04 on Workplace Air Quality
- ISO Workplace Air Quality subcommittee, Inorganic working group (ISO TC 146/SC 2/WG 2)