TENORM – A Premier for Industrial Hygienists

HE SURVIVED THE WOLF, BUT THE TENORM GOT HIM!
Presentation Topics

- Cliff Notes Rad Fundamentals
- NORM and TENORM Definitions
- Impacted Industries
- Issues
- Work Practices and Measurement
- Tips for IHs
Radiological Descriptors

- **Activity**
 - The **rate** of the radioactive decay process.
 - dpm, pCi, Bq

- **Half Life**
 - The time it takes for one half of the radioactive atoms present to decay.
 - Can range from micro-seconds to 1E10 yrs

- **Dose**
 - Total amount of absorbed radiation (energy) in a material or tissue.
 - μrem, μSv
 - Exposure is totally different term—often confused - μR
Decay Chains

Radioactive Decay in Thorium and Uranium Series

Thorium Series
- Po-212 (0.3 μsec)
- Bi-212 (61 min)
- Pb-208 (3 min) (Stable)
- TI-208 (10.6 hr)
- Po-216 (0.15 sec)
- Rn-220 (55 sec)
- Th-228 (1.9 yr)
- Ra-224 (3.6 day) → Ac-228 (6.1 hr)
- Ra-228 (5.8 yr)
- Th-232 (1.4 x 10^10 yr)

Uranium Series
- Po-210 (138 day) → Bi-210 (160 μsec) → Po-214 (19.7 min) → Bi-214 (3 min) → Po-218 (3.8 day)
- Pb-206 (5 day) (Stable)
- Pb-210 (22 yr)
- Pb-214 (27 min)
- Rn-222 (1602 yr)
- Ra-226 (80,000 yr)
- Th-230 (24 day)
- Pa-234 (1.17 min)
- U-234 (4.5 x 10^8 yr)
- U-238 (250,000 yr)

Radioactive decay icon:
- Alpha Decay
- Beta Decay
- Gamma Emission
Equilibrium
Presentation Topics

- Clift Notes Rad Fundamentals
- NORM and TENORM Definitions
- Impacted Industries
- Issues
- Work Practices and Measurement
- Tips for IHs
No not this!
Naturally Occurring Radioactive Material (NORM)

- Uranium and Decay Progeny
- Thorium and Decay Progeny
- Potassium-40
- Rhenium-187, Indium-115, Tellurium-128,130
- Cosmic (and man-made) Produced
 - Be-7, C-14, H-3
NORM – where is it found?
NORM in Consumer Products
NORM in the Earth and Air

- Monazite sands
- Grand Central Station
- Brick
- Reading Prong in USA
- Radon in Homes
TENORM

- Technologically Enhanced NORM
- Re-concentration of U or Th and Progeny
 - Natural High Concentration Bearing Minerals
 - Separation Processes Cause High Concentrations
 - Radon Progeny Build-up
 - Re-capture and Build-up of Low Concentrations
Presentation Topics

- Clift Notes Rad Fundamentals
- NORM and TENORM Definitions
- Impacted Industries
- Issues
- Work Practices and Measurement
- Tips for IHs
Impacted Industries and Processes

- Metals Mining
- Rare Earth Extraction
- Phosphates/Fertilizer Production
- Oil and Gas Production
- Geothermal Production
- Coal Fired Energy Production
- Water Treatment Residuals
TENORM Sources in Oil and Gas Production

- Condensate 222Rn and particulate scale
- Particulate scale and 222Rn,

222Rn, 210Pb, 210Po plates tubular

- Ra isotopes precipitate as mineral scale

238U, 232Th

222Rn migrates with gas

226Ra, 228Ra, 224Ra, 222Rn

Mobilise with hydrocarbons and produced water
Components Contaminated with TENORM in the Oil and Gas Industry
Presentation Topics

- Clift Notes Rad Fundamentals
- NORM and TENORM Definitions
- Impacted Industries
- Issues
- Work Practices and Measurement
- Tips for IHs
Regulations

- NRC
 - SNM, Source and Byproduct Materials
 - States
 - NARM and X-Ray generators
- EPA
 - Effluent Emissions, Waste Disposal, Remediation & Re-use
- OSHA
 - Worker Protection
- DOT
 - Most TENORM meets exemption criteria
- Canada
 - Provinces
 - Health Canada’s Naturally Occurring Radioactive Material Guidelines
States with Specific NORM Regulations

- Alabama
- Arkansas
- Georgia
- Louisiana
- Mississippi
- New Mexico
- Texas
- South Carolina
- West Virginia
Waste Disposal

- Decontamination
- Disposal Options
 - Landfills
 - Encapsulation
 - Deep Well Injection
 - Salt Cavern
 - Land Farming
- Special Issues
 - “Mixed Waste”
 - Legacy wastes and “bone yards”
- Transport
 - State Fees and Permits
 - Compact State Restrictions
Remediation Risk Assessment

- Parameters
- Scenario and Exposure Pathways
 - Farmer, Industrial, Recreational
 - Direct
 - Radon
 - Drinking Water
- Background
- Dose Constraint
 - NRC 25 mrem per year
 - EPA 15 mrem + 4 mrem water pathway
 - States - 10 mrem
Presentation Topics

- Clift Notes Rad Fundamentals
- NORM and TENORM Definitions
- Impacted Industries
- Issues
- Work Practices and Measurement
- Tips for IHs
Principal Hazards

- Critical Radionuclides
 - Thorium and Uranium
 - Radium
 - Radon
 - Polonium
- External
- Internal
Worker Protection

- Whose guidance/rules are enforced
- Typically low dose rate fields
 - Variation between operation and shutdown
- Why?
 - TLD badges?
- Airborne Measurements
- Radon Complications
 - Measurement
 - Progeny Plate-out
- PPE
 - Dispersible contaminants
Exposure Limits

- Surface Contamination
 - ANSI vs. Reg Guide 1.86
 - 600 dpm/100 cm² vs 200 dpm/100 cm² for Ra-226
- Airborne Limits – The DAC
 - Ra-226: 3E-10 μCi/cc
 - Th-232: 1E-12 μCi/cc
 - Rn-222: 1E-08 μCi/cc
 - Po-210: 3E-10 μCi/c
- Dose limits
 - Workers – it depends
 - Public – 1 mSv/y (100 mrem/y)
External Exposure/Dose Rate Measurements
Contamination Detection
Air Sampling - Particulate
Air Sampling - Radon

- Lucas Cells
- E-PERMS
- Track Etch Badges
- Charcoal Canisters
- Air Particulate Filters

EPA Public - 4 pCi/L
WHO Public - 2.7 pCi/L
OSHA Workers - 100 pCi/L
NRC DAC - 30 pCi/L
3.3.11.3.1 Modified Tsivoglou Technique. The concentration, in picoCuries per liter (pCi/L), of each of the radon decay products (Po-218, Pb-214, and Po-214) can be determined by using the following calculations:

- \(C_2 = \frac{1}{FE} (0.16921 \times G_1 - 0.08213 \times G_2 + 0.07765 \times G_3 - 0.5608 \times R) \)
- \(C_3 = \frac{1}{FE} (0.001108 \times G_1 - 0.02052 \times G_2 + 0.04904 \times G_3 - 0.1577 \times R) \)
- \(C_4 = \frac{1}{FE} (-0.02236 \times G_1 + 0.03310 \times G_2 - 0.03765 \times G_3 - 0.05720 \times R) \)

It is important to note that the constants in these equations are based on a 3.04-minute half-life of Po-218. The working level (WL) associated with these concentrations can then be calculated using the following relationship:

Where:

- \(C_2 \) = concentration of Po-218 (RaA) in pCi/L;
- \(C_3 \) = concentration of Pb-214 (RaB) in pCi/L;
- \(C_4 \) = concentration of Po-214 (RaC') in pCi/L;
- \(F \) = sampling flow rate in liters per minute (Lpm);
- \(E \) = counter efficiency in counts per minute/disintegrations per minute (cpm/dpm);
- \(G_1 \) = gross alpha counts for the time interval of two to five minutes;
- \(G_2 \) = gross alpha counts for the time interval of six to 20 minutes;
- \(G_3 \) = gross alpha counts for the time interval of 21 to 30 minutes; and
- \(R \) = background counting rate in cpm.
Presentation Topics

- Clift Notes Rad Fundamentals
- NORM and TENORM Definitions
- Impacted Industries
- Issues
- Work Practices and Measurement
- Tips for IHs
Odds and Ends of Radiation and Radioactivity Monitoring

- One meter doesn’t tell the whole story
- Calibrations can be tricky
- Don’t get too excited on a rainy day
- Nylon gloves on a plastic steering wheel will wreak havoc
- Polyester is both a bad dressing form but also a great way to catch radon particulate progeny
Odds and Ends Air Monitoring

- Typical alpha self-absorption on filters is 80% but can be at 90% for membrane filters
- Can measure radon using particulate by the Modified Tsivoglou Method
- Convert particulate in ug/m³ to uCi/cc by multiplying the ug/m³ by the soil concentration in pCi/g and then performing a units conversion
- Each DAC-Hr equals 250 uSv or 2.5 mrem
Media Sampling and Analysis

- EPA Methods 900 Series
 - for soil use 901.1M
 - for drinking water 903.1
 - method 900 for gross alpha and beta
 - Pb-210 by gas proportional or gamma spec
 - Polonium-210 by alpha spec
Standards and References

- CRC PD
 - Suggested Radiation Protection Regulations Part N – TENORM
- Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)
- API Bulletin E-2
- ANSI – N13.53-2009
- ISCORS
Useful Links

- http://norm.igcc.state.ok.us/reg/dsp_state_tereg.cfm
- http://www.epa.gov/radiation/tenorm
- http://www.iscors.org/index.htm
- http://www.tenorm.com/
Useful Links

- http://emergency.cdc.gov/hazards-all.asp
Radon Spa
Thank You!

Questions?

Note to Pete – remember the answer to the banana question

Peter Collopy
pn collopy@yahoo.com
858—859-1944 (but only between 1000 and 1400)
15 min Qs are free—after that I have to charge you
<table>
<thead>
<tr>
<th>To convert from</th>
<th>To</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curies (Ci)</td>
<td>becquerels (Bq)</td>
<td>3.7×10^{10}</td>
</tr>
<tr>
<td>millicuries (mCi)</td>
<td>megabecquerels (MBq)</td>
<td>37</td>
</tr>
<tr>
<td>microcuries (μCi)</td>
<td>megabecquerels (MBq)</td>
<td>0.037</td>
</tr>
<tr>
<td>millirads (mrad)</td>
<td>milligrays (mGy)</td>
<td>0.01</td>
</tr>
<tr>
<td>millirems (mrem)</td>
<td>microsieverts (μSv)</td>
<td>10</td>
</tr>
<tr>
<td>milliroentgens (mR)</td>
<td>microcoulombs/kilogram (μC/kg)</td>
<td>0.258</td>
</tr>
<tr>
<td>becquerels (Bq)</td>
<td>curies (Ci)</td>
<td>2.7×10^{-11}</td>
</tr>
<tr>
<td>megabecquerels (MBq)</td>
<td>millicuries (mCi)</td>
<td>0.027</td>
</tr>
<tr>
<td>megabecquerels (MBq)</td>
<td>microcuries (μCi)</td>
<td>27</td>
</tr>
<tr>
<td>milligrays (mGy)</td>
<td>millirads (mrad)</td>
<td>100</td>
</tr>
<tr>
<td>microsieverts (μSv)</td>
<td>millirems (mrem)</td>
<td>0.1</td>
</tr>
<tr>
<td>microcoulombs/kilogram (μC/kg)</td>
<td>milliroentgens (mR)</td>
<td>3.88</td>
</tr>
</tbody>
</table>
Uranium-238

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>Radionuclide</th>
<th>Class</th>
<th>Table 1: Occupational Values</th>
<th>Table 2: Effluent Concentrations</th>
<th>Table 3: Releases to Sewers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Col. 1 Oral Ingestion ALI (μCi)</td>
<td>Col. 2 Inhalation ALI (μCi)</td>
<td>Col. 3 DAC (μCi/ml)</td>
</tr>
<tr>
<td>92</td>
<td>Uranium-2383</td>
<td>D, see 230U</td>
<td>1E+1 Bone Surf</td>
<td>1E+0 Bone Surf</td>
<td>6E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2E+1)</td>
<td>(2E+0)</td>
<td>-</td>
</tr>
<tr>
<td>W, see 230U</td>
<td>-</td>
<td>8E-1</td>
<td>3E-10</td>
<td>1E-12</td>
<td>-</td>
</tr>
<tr>
<td>Y, see 230U</td>
<td>-</td>
<td>4E-2</td>
<td>2E-11</td>
<td>6E-14</td>
<td>-</td>
</tr>
</tbody>
</table>

Radium-226

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>Radionuclide</th>
<th>Class</th>
<th>Table 1: Occupational Values</th>
<th>Table 2: Effluent Concentrations</th>
<th>Table 3: Releases to Sewers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Col. 1 Oral Ingestion ALI (μCi)</td>
<td>Col. 2 Inhalation ALI (μCi)</td>
<td>Col. 3 DAC (μCi/ml)</td>
</tr>
<tr>
<td>88</td>
<td>Radium-226</td>
<td>W, all compounds</td>
<td>2E+0 Bone Surf</td>
<td>6E-1</td>
<td>3E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5E+0)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Thorium-232

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>Radionuclide</th>
<th>Class</th>
<th>Table 1 Occupational Values</th>
<th>Table 2 Effluent Concentrations</th>
<th>Table 3 Releases to Sewers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Col. 1 Oral Ingestion ALI (µCi)</td>
<td>Col. 2 Inhalation ALI (µCi)</td>
<td>Col. 3 DAC (µCi/ml)</td>
</tr>
<tr>
<td>90</td>
<td>Thorium-232</td>
<td>W, see 226Th</td>
<td>7E-1 Bone Surf</td>
<td>1E-3 Bone Surf</td>
<td>5E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2E+0)</td>
<td>(3E-3)</td>
<td>-</td>
<td>4E-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y, see 226Th</td>
<td>-</td>
<td>3E-3 Bone Surf</td>
<td>1E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4E-3)</td>
<td>-</td>
<td>6E-15</td>
</tr>
</tbody>
</table>

Polonium-210

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>Radionuclide</th>
<th>Class</th>
<th>Table 1 Occupational Values</th>
<th>Table 2 Effluent Concentrations</th>
<th>Table 3 Releases to Sewers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Col. 1 Oral Ingestion ALI (µCi)</td>
<td>Col. 2 Inhalation ALI (µCi)</td>
<td>Col. 3 DAC (µCi/ml)</td>
</tr>
<tr>
<td>84</td>
<td>Polonium-210</td>
<td>D, see 203Po</td>
<td>3E+0</td>
<td>6E-1</td>
<td>3E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W, see 203Po</td>
<td>-</td>
<td>6E-1</td>
<td>3E-10</td>
</tr>
</tbody>
</table>