Ergonomic Assessment Toolkit
Table of Contents

- **Introduction to the AIHA Ergonomic Tool Kit** ... 1
- **Overview of Ergonomic Assessment Tools** ... 3
- **FLOW CHART FOR SELECTION AN ERGONOMIC ASSESSMENT TOOL** 4
 - ACGIH® TLV® for Hand Activity Level ... 5
 - ACGIH® TLV® for Hand Arm Segmental Vibration .. 7
 - ACGIH® TLV® for Screening for Lifting ... 9
 - Estimation of Metabolic Rate .. 11
 - Liberty Mutual (Snook) Psychophysical Tables .. 13
 - NIOSH Revised Lifting Equation (1991) ... 15
 - Occupational Repetitive Action Index (OCRA) .. 17
 - OSHA Screening Tool .. 19
 - OSHA Video Display Terminal Checklist .. 21
 - PLIBEL ... 23
 - Quick Ergonomic Checklist (QEC) ... 25
 - Rapid Entire Body Assessment (REBA) ... 27
 - Rapid Upper Limb Assessment (RULA) .. 29
 - Rodger’s Muscle Fatigue Assessment .. 31
 - Strain Index ... 33
 - Utah Back Compressive Force .. 36
 - Washington State’s (WISHA) Caution Zone .. 38
 - Washington State (WISHA) Hazard Zone .. 40
 - Washington State (WISHA) Lifting Calculator .. 42
Introduction to the AIHA Ergonomic Tool Kit

The AIHA Ergonomic Tool Kit provides a variety of ergonomic assessment tools and information on ergonomic analysis for the general public. The AIHA Tool Kit was created so that users with a range of experience in ergonomic analysis would be able to employ it to analyze task in a workplace. The Tool Kit comprised of 20 ergonomic assessment tools that can be used to analyze jobs for a variety of ergonomic risk factors. The AIHA Ergonomic Tool Kit provides information for each assessment tool including purpose of the tool, the body regions and ergonomic risk factors considered by the tool, types of jobs the tool is appropriate for, the inputs needed for the tool, the expected output of the tool, limitations of the tool, and location of electronic version of the tool. Please carefully read this information as it is very helpful in selecting the appropriate tool to assess a task.

Before selecting ergonomic assessment tools from this tool kit, it is important to first observe the task; familiarize yourself with the elements, movements, and tools used for the task; and perform an informal ergonomics assessment of the job. The informal assessment should include general ergonomic risk factors observed such as awkward postures, forceful movements, and repetitively movements. Also, it is important to know the weights of all the parts and/or tools handled during the task. An ergonomic screening tool may help with the initial ergonomic assessment.

To better assess a job for ergonomic hazards, it is helpful to break the job into its basis tasks and assess each task instead of the complete job. To divide the job into individual tasks, it is useful to first observe the job for several cycles to ensure that you are familiar with the job and how it is regularly performed. During the observation, write down each task that is included in the job. A job task is a segment of the operation necessary to advance the
work. Each task should be easily identified and should have distinct beginning and end. Once the job is broken down into tasks, select the appropriate ergonomic assessment tool for each task to analyze the ergonomic risk factors associated with that task.

When selecting ergonomic assessment tools to use to analyze a task, it is important to select a tool that: 1. analyzes the risk factors found in the informal assessment, 2. analyzes the body regions used for the task, 3. includes duration if the task is complex or multi-tasked, and 4. provides the results needed (qualitative vs. quantitative). The information in this tool kit is provided to help you select the appropriate ergonomic assessment tool.
Overview of Ergonomic Assessment Tools

Whole Body Screening Tools (Qualitative Tools)
- OSHA Screening Tool
- OSHA Video Display Terminal checklist
- Washington State’s Caution Zone
- Washington State’s Hazard Zone

Whole Body Assessment Tools (Semi-Quantitative)
- Quick Ergonomic Checklist (QEC)
- Rodger’s Muscle Fatigue Assessment
- PLIBEL
- Rapid Entire Body Assessment (REBA)

Upper Limb Assessment Tool (Semi-Quantitative)
- Rapid Upper Body Assessment (RULA)
- Occupational Repetitive Action Index (OCRA)

Upper Limb Assessment Tools (Quantitative)
- ACGIH® TLV® for Hand Activity Level
- ACGIH® TLV® for Hand Arm Segmental Vibration Strain Index
- Utah Shoulder Moment Model

Physiology Based Assessment Tools (Quantitative)
- Estimation of Metabolic Rate

Lifting Assessments (Qualitative)
- ACGIH® TLV® for Screening for Lifting

Lifting Assessments (Semi-Quantitative)
- Liberty Mutual (Snook) Psychophysical Tables
- Washington State Lifting Calculator

Lifting Assessments (Quantitative)
- NIOSH Lifting Index (1991)
- Utah Back Compressive Force Model
FLOW CHART FOR SELECTION AN ERGONOMIC ASSESSMENT TOOL

* A manual material handling task is defined as the moving of materials by hand by pushing, pulling, carrying, lifting, lowering, or stacking.
** Best for monostack jobs only
Purpose:
To provide basic general tool that maybe used by the Health and safety professional to
determine job safety as it pertains to the repetitive motion, force exertion, rest/recovery
period and work demands place on the hand region during the act of hand manipulation.

Developed by:
TLV adopted by American Conference of Governmental Industrial Hygienists

Developed When:
2002

Musculoskeletal Disorder Risk Factors Considered:
Repetition, duration, force, rest and recovery, and loads

Body Regions Considered:
Wrist and hands

Type of Jobs Appropriate For:
Mono-task jobs performed longer than 4 hours per day
Seated or standing dynamic hand activities

Type of Jobs Not Appropriate For:
Static hand activities and activities requiring body regions other than hands

Limitations:
Limited to stress on the hand
No consideration of local area that might be effected
Does not consider posture, vibration, or contact stress

Inputs:
Repetitiveness of hand activity
Force exerted by hands

Outputs:
Comparison of hand activity to the Threshold Limit Value (TLV) for hand activity

Who is the Tool Design For:
Professionals trained in ergonomics and general users

Studies That Provide Evidence of Validation of the Tool:
and validity assessment of the hand activity level threshold limit value and strain index

Minimal Amount of Training:
2 hours

Electronic Version:

Reference of Peer-Reviewed Publication:

Industries and Jobs Where Tool Has Been Applied:
Any task that requires hand and finger manipulation

Is Tool Copyrighted:
Yes

Instructional or Supplemental Information:

Equipment Needed to Use Tool:
None

Time Required Analyzing Typical Job:
<30 minutes
ACGIH® TLV® for Hand Arm Segmental Vibration

Purpose:
To provide recommendations for hand-arm vibration exposure limits through a combination of frequency-weighted, RMS, component accelerations, and vibration exposure duration.

Developed by:
TLV adopted by American Conference of Governmental Industrial Hygienists from ISO 5349 and ANSI S3.34-1986

Developed When:
1984-2004

Musculoskeletal Disorder Risk Factors Considered:
Vibration

Body Regions Considered:
Hands, arms, shoulders

Type of Jobs Appropriate For:
Jobs requiring hand-held vibrating tools

Type of Jobs Not Appropriate For:
Whole body vibration jobs and jobs without vibration

Limitations:
Limited to hand vibration
Ignores other MSD risk factors

Inputs:
Cycle Time
Orthogonal components of vibration provided transducer

Outputs:
Comparison of hand activity to the Threshold Limit Value (TLV) for hand vibration

Who is the Tool Design For:
Professionals trained in ergonomics, above a novice

Minimal Amount of Training:
High level of training and expertise required to identify vector directions, install lightweight measurement transducer, properly use low pass mechanical filter, interpret results, including frequency weightings of vibration and advanced mathematic calculations.

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature
Electronic Version:
http://personal.health.usf.edu/tbernard/HollowHills/HAV50.xls

Reference of Peer-Reviewed Publication:
None currently found in literature

Industries and Jobs Where Tool Has Been Applied:
Grinding, sanding, chipping, drilling, sawing, production using vibrating or power hand tools, regular use of vibrating hand tools

Is Tool Copyrighted:
Yes, purchase price of $60 (2009) for ACGIH Threshold Limit Value guide

Instructional or Supplemental Information:
ISO 5349 and ANSI S3.34-1986 both describe how to measure and evaluate human exposure to hand transmitted vibration

Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices, (2009), American Conference of Governmental Industrial Hygienists, 185-188.

Equipment Needed to Use Tool:
Small and lightweight transducer mounted to accurately record one or more orthogonal components of source vibration in the 5-1500 Hz range

Frequency-weighted filter network needed for human response measuring

Time Required Analyzing Typical Job:
8 hours
ACGIH® TLV® for Screening for Lifting

Purpose:
To identify the appropriate and safe weight to lift for different conditions based on lift frequencies, durations, and object placement.

Developed by:
TLV adopted by American Conference of Governmental Industrial Hygienists

Developed When:
1995-2004

Musculoskeletal Disorder Risk Factors Considered:
Lift frequencies; lift duration, height of lift, and horizontal distance, awkward postures, overhead postures, one-hand lifting, unstable loads, and environmental conditions (high heat and humidity)

Body Regions Considered:
Low back

Type of Jobs Appropriate For:
Lifting of objects in any type of industries

Type of Jobs Not Appropriate For:
Non-lifting manual material handling tasks, sitting work

Limitations:
Weight-based
Focused on pure lifting conditions only (e.g. mono-lifting)
Under TLV, no health risk is assumed

Inputs:
Weight of load
Height of origin and destination of load
Distance of load from body
Frequency of lifting
Duration of lifting

Outputs:
Comparison of hand activity to the Threshold Limit Value (TLV) for lifting

Who is the Tool Design For:
Health professionals with a basic understanding of ergonomics and general users

Minimal Amount of Training:
Reviewing the TLV guide (<1 hour)

Studies That Provide Evidence of Validation of the Tool:
unknown
Reference of Peer-Reviewed Publication:
None currently found in literature

Electronic Version:

Industries and Jobs Where Tool Has Been Applied:
Virtually all industries where jobs are isolated to lifting

Is Tool Copyrighted:
Yes, purchase price of $60 (2009) for ACGIH Threshold Limit Value guide

Instructional or Supplemental Information:

Equipment Needed to Use Tool:
Scale, Tape Measure, and Stop Watch

Time Required Analyzing Typical Job:
<1 hour
Estimation of Metabolic Rate

Purpose:
To provide methods for the determination of metabolic rate in the context of ergonomics of the climatic working environment. It can also be used for assessment of working practices, the energetic cost of specific jobs or sport activities, and the total energy cost of an activity.

Developed by:
ISO committee TC 159/SC 5

Developed When:
1990-2004

Musculoskeletal Disorder Risk Factors Considered:
Fatigue

Body Regions Considered:
Whole Body

Type of Jobs Appropriate For:
Most jobs

Type of Jobs Not Appropriate For:
Sitting jobs and non-metabolic taxing jobs

Limitations:
Estimation of job metabolic cost used
Only give actual number for a few specific tasks, most jobs require extrapolation
Limited to the knowledge of the user ability to determine appropriate metabolic rating.

Inputs:
ISO Method:
Energy for posture, activity, horizontal travel, and vertical travel
Bernard & Joseph Method:
Energy for movement, lifting, pushing/pulling, horizontal travel, and vertical travel
General Activity and Manual Material Handling Methods:
Speed of travel, grade, distance of travel, lift characteristics

Outputs:
ISO and Bernard & Joseph Methods:
Energy expended in Watts
General Activity Method:
Energy expended in V_{O2} (ml/kg·min)
Manual Material Handling Method:
Energy expended in kcal/min
Who is the Tool Design For:
Professionals and non-specialist users

Minimal Amount of Training:
<4 hours

Studies That Provide Evidence of Validation of the Tool:
Comparing the metabolic rates estimated for both methods with the actual measured metabolic rate (MMeas) in 6 manual material handling tasks simulated under laboratory conditions. The metabolic rate was calculated from oxygen consumption VO2(19 participants) according to Standard No. ISO 8996 (ISO, 1990). Additionally, the participants estimated perceived exertion using the Borg scale

Electronic Version:
User's guide and recommendations for metabolic rate:

Reference of Peer-Reviewed Publication:
None currently found in literature

Industries and Jobs Where Tool Has Been Applied:
Construction, packaging, shipping, manual material handling

Is Tool Copyrighted:
Yes

Instructional or Supplemental Information:
None currently found in literature

Equipment Needed to Use Tool:
None

Time Required Analyzing Typical Job:
<1 hour
Liberty Mutual (Snook) Psychophysical Tables

Purpose:
To provide guidance for manual material handling tasks.

Developed by:

Developed When:
1978-1991

Musculoskeletal Disorder Risk Factors Considered:
Force, posture, frequency, gender, percentage of population capable

Body Regions Considered:
Whole Body, Low Back

Type of Jobs Appropriate For:
Manual material handling

Type of Jobs Not Appropriate For:
Repetitive task jobs except manual material handling

Limitations:
Based on psychophysical ratings of industrial work groups, not strength or probability of injury.

Only be used to rate one task at a time, not effect of multiple MMH tasks.

Who is the Tool Design For:
Novice to expert

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Minimal Amount of Training:
1 hour

Electronic Version:
http://libertymmhtables.libertymutual.com/CM_LMTablesWeb/pdf/LibertyMutualTables.pdf

Reference of Peer-Reviewed Publication:

Snook, S. H. and Ciriello, V. M.; The design of manual handling tasks: revised tables of maximum acceptable weights and forces, Ergonomics, 34:9 1197-1213, 199l.

Industries and Jobs Where Tool Has Been Applied:
All industries

Is Tool Copyrighted:
Yes

Instructional or Supplemental Information:
http://libertymmhtables.libertymutual.com/CM_LMTablesWeb/pdf/LibertyMutualTables.pdf

Equipment Needed to Use Tool:
Measuring tape, stopwatch

Time Required Analyzing Typical Job:
<< 1 hour
Purpose:
To provide an easy-to-use and simple job analysis tool to control overexertion injuries associated with manual material handling and lifting.

Developed by:
Tom Waters, Vern Putz-Anderson, Arun Garg
National Institute for Occupational Safety and Health

Developed When:
1991-1993

Musculoskeletal Disorder Risk Factors Considered:
Lifting Force, Posture, Repetition, Duration

Body Regions Considered:
Low Back

Type of Jobs Appropriate For:
Two hand lifting and lowering with stable loads

Type of Jobs Not Appropriate For:
Repetitive tasks, static tasks, dynamic tasks, seated tasks

Limitations:
Does not factor in whole-body vibration, direct trauma to the back, or non-lifting MSD hazards.

Cannot be used for:
1-handed lifts
>8hr lifting
Seated or kneeling lifting
Tight work space lifting
Lifting unstable objects
Carrying / pushing / pulling tasks
Slippery or uneven surfaces

Cannot predict injuries to individual operators.

Does not account for individual risk factors including gender, age, or medical history.

Who is the Tool Design For:
Professionals trained in ergonomics and general users

Minimal Amount of Training:
Reviewing user guide or self training (<4 hours)

Studies That Provide Evidence of Validation of the Tool:
 Results: NIOSH limits are different than psychophysics at low and high lift frequencies; small and large horizontal distances. NIOSH limits highly correlated to Snook
Tables in low frequency range. 3400 N limit for biomechanics can not protect majority of population on basis of damage load concept. Energy expenditure limits can be sustained for 57 to 99% of worker population

2. Waters and Associates (1999)
 Results: As LI increased from 1 to 3, the odds of LBP increased
 Greatest OR when LI between 2 and 3 (OR=2.45)
 When LI > 3, OR decreased (OR = 1.45)

 Results: OR = 3.1 95%CI (2.6, 3.8)
 Moderate specificity - 55% correct for low-risk jobs
 Good sensitivity - 73% correct of high-risk jobs

Reference of Peer-Reviewed Publication:

Electronic Version:

Free online calculator based on 1991 Lifting Equation:
http://www2.worksafebc.com/calculator/llc/Default.htm

Industries and Jobs Where Tool Has Been Applied:
Package sorting and handling, package delivery, beverage delivery, assembly work, manual handling of less than 10 pounds, production jobs with forceful exertions, stationary lifting

Is Tool Copyrighted:
No

Instructional or Supplemental Information:

Equipment Needed to Use Tool:
Scale and Tape Measure

Time Required Analyzing Typical Job:
<1 hour
Occupational Repetitive Action Index (OCRA)

Purpose:
To provide a measurement tool that quantifies the relationship between the daily number of actions actually performed by the upper limbs in repetitive tasks, and the corresponding number of recommended actions.

Developed by:
Enrico Occhipinti

Developed When:
1998

Musculoskeletal Disorder Risk Factors Considered:
Repetitiveness, force, awkward posture and movements, and lack of recovery time

Body Regions Considered:
Upper Limbs

Type of Jobs Appropriate For:
Repetitive tasks where upper limbs are used majority to handle materials

Type of Jobs Not Appropriate For:
Jobs where considerable risk is inherit due to use of the lower extremities

Limitations:
Tool cannot predict risk associated with vibration or contact stress or disorders of the shoulder, neck or back.

Who is the Tool Design For:
Professionals trained in ergonomics

Minimal Amount of Training:
8 hours

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Electronic Version:

Reference of Peer-Reviewed Publication:

Industries and Jobs Where Tool Has Been Applied:
Package sorting and handling, package delivery, beverage delivery, assembly work, manual handling of less than 10 pounds, production jobs with forceful exertions, stationary lifting

Is Tool Copyrighted:
Yes

Instructional or Supplemental Information:
None currently found in literature

Equipment Needed to Use Tool:
Computer, stopwatch, counter, and software

Time Required Analyzing Typical Job:
<30 minutes
OSHA Screening Tool

Purpose:
To provide a basic screening tool that can be used to identify areas of concern for potential MSD risk factors, or used when a MSD is reported to an employer.

Developed by:
Occupational Health and Safety Administration (OSHA)

Developed When:
Not Known

Musculoskeletal Disorder Risk Factors Considered:
Repetition, force, contact stress, awkward posture, and vibration

Body Regions Considered:
All joints and total body

Type of Jobs Appropriate For:
Most jobs that may cause a MSD or has particular risk factors

Type of Jobs Not Appropriate For:
None.

Limitations:
Screening tool does not have a quantitative measurement to guide the user on how hazardous the job is. It is purely for screening and identifying the hazards of the job
No ranking or risk assessment number

Who is the Tool Design For:
Professionals trained in ergonomics and general users

Minimal Amount of Training:
2 hours

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Electronic Version:

Reference of Peer-Reviewed Publication:
None currently found in literature

Industries and Jobs Where Tool Has Been Applied:
Manual material handling, bulk manufacturing, assembly line, general manufacturing, and construction

Is Tool Copyrighted:
No
Instructional or Supplemental Information:
None currently found in literature

Equipment Needed to Use Tool:
Protractor

Time Required Analyzing Typical Job:
<30 minutes
OSHA Video Display Terminal Checklist

Purpose:
To provide a way for employers to comply with OSHA requirement to identify, analyze, and control MSD hazards in VDT tasks.

Developed by:
Occupational Health and Safety Administration (OSHA)

Developed When:
Not Known

Musculoskeletal Disorder Risk Factors Considered:
Awkward posture

Body Regions Considered:
Neck, shoulder, hand, wrist, arm, back, and legs

Type of Jobs Appropriate For:
Jobs requiring use of video display terminals (VDT)

Type of Jobs Not Appropriate For:
Jobs without a VDT

Limitations:
Doesn’t address individual employee postures, only examines the work station

Doesn’t address employee eye strain and fatigue

Who is the Tool Design For:
Professionals trained in ergonomics and non-specialist users

Minimal Amount of Training:
Reviewing user guide or self training (<4 hours)

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Electronic Versions:
http://www.ipsamerica.com/ergo/vdt_checklist.PDF
http://www.osha.gov/Publications/videoDisplay/videoDisplay.html

Reference of Peer-Reviewed Publication:
None currently found in literature

Industries and Jobs Where Tool Has Been Applied:
Office buildings, laboratory settings, and any occupational setting using a Video display terminal

Is Tool Copyrighted:
No
Instructional or Supplemental Information:
http://www.osha.gov/Publications/videoDisplay/videoDisplay.html

Equipment Needed to Use Tool:
VDT questionnaire checklist

Time Required Analyzing Typical Job:
<30 minutes
PLIBEL

Purpose:
To provide a valid and rapid checklist to identify potential risk factors in the workplace

Developed by:
Kristina Kemmlert

Developed When:
1995

Musculoskeletal Disorder Risk Factors Considered:
Repetition, duration, coupling force, lift force, push/pull force, awkward posture, and contact stress/impact

Body Regions Considered:
Neck, Shoulder, Upper Back, Elbows, Forearm, Hands, Foot, Knees, Hips, and Low Back

Type of Jobs Appropriate For:
Manual handling, repetitive tasks, static tasks, dynamic tasks, seated and standing

Type of Jobs Not Appropriate For:
Vibration intensive

Limitations:
Inter-observer reliability not high (Kemmlert 1995)
It is difficult to justify the magnitude of 'risks' when the combination of several factors is presented within a job
Answers limited to yes or no

Who is the Tool Design For:
Non-specialist users

Minimal Amount of Training:
<4 hours

Studies That Provide Evidence of Validation of the Tool:
Kemmlert, K. 1995
Technique:
Comparison to German ergonomic job analysis procedure AET
Relevant items were placed into the checklist
Checklist was field tested for validity at 200 workplaces through workplace observations and against a well-documented existing method (AET).
Reliability was evaluated by having 24 ergonomically skilled people perform four assessments using PLIBEL

Results:
Percentage of agreement Ranged from 72% to 100%
Kappa values ranged poor to perfect (-0.06 to 1.00)
PLIBEL is dichotomous vs. AET is graded on steps of 0 to 5
PLIBEL concentrates on one extreme event (occurrence of hazard) vs. AET analyzes all components of job
PLIBEL relates to individual capacity vs. AET relates to job and workplace
The reliability test yielded fair to moderate agreement
The checklist did not make use of graded steps; rather it required only dichotomous answers
PLIBEL analysis was directly related to the individual observed worker, and not to the job and workplace, as was done in AET
The author concludes that the continued use of PLIBEL would probably increase the understanding of ergonomics hazards at workplaces and improve ergonomic working conditions.

Electronic Version:
User’s guide:
Filled out and part of a case study (Table 5):
http://www.cdc.gov/niosh/topics/ergonomics/ergship/PIQRFAHalterMossPoint.pdf

Reference of Peer-Reviewed Publication:
Kemmlert K. A method assigned for the identification of ergonomic hazards – PLIBEL.

Industries and Jobs Where Tool Has Been Applied:
Suitable for all industries

Is Tool Copyrighted:
No

Instructional or Supplemental Information:
None currently found in literature

Equipment Needed to Use Tool:
None

Time Required Analyzing Typical Job:
<1 hour
Quick Ergonomic Checklist (QEC)

Purpose:
To provide an easy to use and practical tool to assess physical exposures and predict risk for work-related musculoskeletal disorders

Developed by:
Peter Buckle and Guangyan Li

Developed When:
1998

Musculoskeletal Disorder Risk Factors Considered:
Repetitive movements, lifting force, push/pull force, awkward postures, task duration, and vibration

Body Regions Considered:
Neck, shoulder, hand, wrist, arm, back, and legs

Type of Jobs Appropriate For:
Manual handling, repetitive tasks, static tasks, dynamic tasks, seated and standing

Type of Jobs Not Appropriate For:
None

Limitations:
Only allows for looking at the ‘worst’ task and, for each body area; when the body area is most heavily loaded
Requires judgment when selecting tasks to assess and deciding when the body part is most heavily loaded
Hand force and weight of objects handled is determined by the worker, who may not understand how to estimate them
Only examines individual tasks, not cumulative effects of all activities performed
Cannot predict injuries to individual operators
Does not account for individual risk factors including gender, age, or medical history

Who is the Tool Design For:
Professionals trained in ergonomics and general users

Minimal Amount of Training:
4 hours

Studies That Provide Evidence of Validation of the Tool:
QEC Compared to video, but not validated for its ability to quantitatively predict risk of MSD. QEC results had 78.2% agreement with video
Electronic Version:

Interpreting the scores (p 37): http://www.hse.gov.uk/research/rrpdf/rr211.pdf

Reference of Peer-Reviewed Publication:

Industries and Jobs Where Tool Has Been Applied:
Suitable for all industries

Is Tool Copyrighted:
No

Instructional or Supplemental Information:

Equipment Needed to Use Tool:
Questionnaire for employee, weigh scale, force gauges

Time Required Analyzing Typical Job:
<1 hour
Rapid Entire Body Assessment (REBA)

Purpose:
To develop a postural analysis system sensitive to musculoskeletal risk in variety of jobs that is based on body segment specific ratings within specific movement planes, using a scoring system for muscle activity including static, dynamic, rapidly changing or unstable postures, and provide a benchmark for urgency of action.

Developed by:
S. Hignett and L. McAtammey

Developed When:
2000

Musculoskeletal Disorder Risk Factors Considered:
Awkward postures, load/force, coupling, activity level

Body Regions Considered:
Trunk, neck, legs, knees, upper and lower arms, wrists

Type of Jobs Appropriate For:
Jobs with a range of frequencies, involving multiple body regions, standing or sitting or combination

Type of Jobs Not Appropriate For:
None

Limitations:
Some factors (e.g. twisting, lateral bending, abduction) are weighted equally no matter to what degree they exist (e.g. 5° twisting or 20° of twisting)

Who is the Tool Design For:
General Users

Minimal Amount of Training:
1 hour

Studies That Provide Evidence of Validation of the Tool:
Inter-observer reliability was found to be 62-85% for 14 users. (S. Hignett and L. McAtammey)

Electronic Version:
http://personal.health.usf.edu/tbernard/HollowHills/REBA.pdf
Reference of Peer-Reviewed Publication:

Industries and Jobs Where Tool Has Been Applied:
Suitable for all industries

Is Tool Copyrighted:
No

Instructional or Supplemental Information:
None found in the literature

Equipment Needed to Use Tool:
Worksheet, protractor, scale

Time Required Analyzing Typical Job:
<1 hr
Rapid Upper Limb Assessment (RULA)

Purpose:
To investigate the exposure to risk factors for upper limb disorders and provide a method of screening work population quickly so the results that could go into a wider, more versatile ergonomic assessment, while eliminating the need for assessment equipment.

Developed by:
L. McAmney, E.N. Corlett

Developed When:
1992

Musculoskeletal Disorder Risk Factors Considered:
Repetition, awkward/static postures, force, time worked without break

Body Regions Considered:
Upper arms, lower arms, wrists, trunk, neck, legs

Type of Jobs Appropriate For:
Jobs with a range of frequencies, involving multiple body regions, standing or sitting or combination

Type of Jobs Not Appropriate For:
None

Limitations:
Some factors (e.g. twisting, lateral bending, abduction) are weighted equally no matter to what degree they exist (e.g. 5° twisting or 20° of twisting)

Who is the Tool Design For:
General users

Minimal Amount of Training:
1 hour

Studies That Provide Evidence of Validation of the Tool:
None found in literature

Electronic Version:
http://personal.health.usf.edu/tbernard/HollowHills/RULA.pdf
http://ergo.human.cornell.edu/Pub/AHquest/CURULA.pdf
http://www.rula.co.uk/

Reference of Peer-Reviewed Publication:

Industries and Jobs Where Tool Has Been Applied:
Suitable for all industries

Is Tool Copyrighted:

No

Instructional or Supplemental Information:
None found in the literature

Equipment Needed to Use Tool:
Worksheet, protractor, scale

Time Required Analyzing Typical Job:
<1 hr
Rodger’s Muscle Fatigue Assessment

Purpose:
To provide a method of evaluating the physiological demands of a task against published criteria of acceptable levels of oxygen consumption for whole body or upper bodywork.

Developed by:
Suzanne Rodgers

Developed When:
1978-1992

Musculoskeletal Disorder Risk Factors Considered:
Fatigue

Body Regions Considered:
Neck, shoulder, hand, wrist, arm, back, legs, elbow, and knee

Type of Jobs Appropriate For:
Jobs that require high frequency and duration, and have awkward postures

Type of Jobs Not Appropriate For:
Non-fatiguing job analysis, and seated jobs

Limitations:
Any task evaluated is limited to 30 seconds of continuous effort and 15 minutes of effort frequency. After this point, the job is considered very high priority. No numerical value is assigned after this point

Who is the Tool Design For:
Professional users

Minimal Amount of Training:
8 hours

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Electronic Version:

Reference of Peer-Reviewed Publication:

Industries and Jobs Where Tool Has Been Applied:
General manufacturing, construction, and healthcare

Is Tool Copyrighted:
No

Instructional or Supplemental Information:

Equipment Needed to Use Tool:
None

Time Required Analyzing Typical Job:
1-2 hours
Purpose:
To provide a relatively simple risk assessment method designed to evaluate a job's level of risk for developing a disorder of the distal upper extremities

Developed by:
J. Steven Moore and Arun Garg

Developed When:
1995

Musculoskeletal Disorder Risk Factors Considered:
Lifting Force, push/pull force, Awkward Posture, Repetition, Duration

Body Regions Considered:
Hands, wrists, forearms, and elbows

Type of Jobs Appropriate For:
Hand intensive repetitive tasks

Type of Jobs Not Appropriate For:
Static tasks and awkward posture tasks

Limitations:
Does not account for contact stress, cold temperatures, hand-arm vibration, or recovery time between exertions
Only looks at MSD risk for the upper extremity, from the elbows to hands
User must estimate intensity of exertions, postures, & speed of work
Multiplier values used in the method are primarily based on the authors' professional opinions with support from physiological, biomechanical, and epidemiological principles as opposed to a mathematical relationship between task variables
Cannot predict injuries to individual operators
Does not account for individual risk factors including gender, age, or medical history.

Who is the Tool Design For:
Professionals trained in ergonomics and general users

Minimal Amount of Training:
4 hours
Studies That Provide Evidence of Validation of the Tool:
Knox and Moore (2001)
Predictive Validity:
Turkey processing plant with 28 single-task jobs
All tasks were video taped for 10 job cycles
OSHA 200 logs over a 3-year period

Moore and Garg (1994)
Predictive Validity:
Pork processing plant with 32 jobs categories
All tasks were video taped
OSHA 200 logs over a 20-month period

Rucker and Moore (2002)
Predictive Validity:
Manufacturing plants, Hose connecting plant, Chair manufacturer
28 jobs categories, tasks video taped
OSHA 200 logs over a 3-year period

Overall, Provides evidence of good sensitivity (0.86-1.0) and evidence of good specificity (0.79-0.94) depending on population

Electronic Version:
http://ergo.human.cornell.edu/ahJSI.html

Reference of Peer-Reviewed Publication:

Industries and Jobs Where Tool Has Been Applied:
Small parts assembly, inspecting, meatpacking, sewing, packaging, keyboarding, data processing, and highly repetitive hand motion jobs

Is Tool Copyrighted:
No

Instructional or Supplemental Information:
None currently found in literature
Equipment Needed to Use Tool:
Stopwatch

Time Required Analyzing Typical Job:
1-2 hours
Utah Back Compressive Force

Purpose:
To provide a screening tool that can be used to get an early insight into the compressive forces placed on the back when performing manual material handling (MMH) tasks and should be used to identify potential areas of concern.

Developed by:
Donald S. Bloswick

Developed When:
2000

Musculoskeletal Disorder Risk Factors Considered:
Load, posture, frequency, duration and static positions

Body Regions Considered:
Upper and lower back

Type of Jobs Appropriate For:
Manual material handling tasks

Type of Jobs Not Appropriate For:
Non-lifting job, high risk postural jobs may present false positive

Limitations:
Very primitive and general in terms of usable data for change

Who is the Tool Design For:
General users

Minimal Amount of Training:
2 hours

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Electronic Version:

Reference of Peer-Reviewed Publication:
None currently found in literature

Industries and Jobs Where Tool Has Been Applied:
None currently identified

Is Tool Copyrighted:
Yes

Instructional or Supplemental Information:
None currently found in literature
Equipment Needed to Use Tool: None

Time Required Analyzing Typical Job: 1 hour
Washington State's (WISHA) Caution Zone

Purpose:
To control exposure to MSD hazards in workplace by using a screening tool for typical work activities to find jobs that have a sufficient degree of risk

Developed by:
Washington State’s Department of Labor and Industries

Developed When:
Not Known

Musculoskeletal Disorder Risk Factors Considered:
Repetitive movements, lifting force, push/pull force, grip force, awkward postures, task duration, and vibration

Body Regions Considered:
Neck, shoulder, hand, wrist, arm, back, and legs

Type of Jobs Appropriate For:
Most tasks

Type of Jobs Not Appropriate For:
Non-labor intensive jobs

Limitations:
The checklist is general in nature
Best used as a preliminary measurement to assess a hazardous job
Must be followed-up with a finite risk analysis

Who is the Tool Design For:
Professionals trained in ergonomics and general users

Minimal Amount of Training:
4 hours

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Electronic Version:

Reference of Peer-Reviewed Publication:
None currently found in literature

Industries and Jobs Where Tool Has Been Applied:
General manufacturing, construction, and healthcare
Is Tool Copyrighted:
No

Instructional or Supplemental Information:
None currently found in literature

Equipment Needed to Use Tool:
Tape measure and stop watch

Time Required Analyzing Typical Job:
1-2 hours
Washington State (WISHA) Hazard Zone

Purpose:
To provide a regulatory effort for performing further risk assessment on jobs that had been identified as caution zone jobs. The checklist criteria are at levels that most workers would be at a high risk of developing a work-related MSD if exposed on a regular basis.

Developed by:
Washington State’s Department of Labor and Industries

Developed When:
Not Known

Musculoskeletal Disorder Risk Factors Considered:
Repetitive movements, lifting force, push/pull force, grip force, awkward postures, task duration, and vibration

Body Regions Considered:
Neck, shoulder, hand, wrist, arm, back, and legs

Type of Jobs Appropriate For:
Most tasks

Type of Jobs Not Appropriate For:
Non-labor intensive jobs

Limitations:
Some of the criteria on the hazard zone checklist were increased above levels suggested in the research literature due to political interference or practical limitations

Who is the Tool Design For:
Professionals trained in ergonomics and general users

Minimal Amount of Training:
4 hours

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Electronic Version:

Reference of Peer-Reviewed Publication:
None currently found in literature

Industries and Jobs Where Tool Has Been Applied:
General manufacturing, construction, and healthcare

Is Tool Copyrighted:
No
Instructional or Supplemental Information:
None currently found in literature

Equipment Needed to Use Tool:
None

Time Required Analyzing Typical Job:
1-2 hours
Washington State (WISHA) Lifting Calculator

Purpose:
To perform a quick analysis of a lifting job in order to determine the need for more detailed analyses

Developed by:
Washington State's Department of Labor and Industries

Developed When:
Not Known

Musculoskeletal Disorder Risk Factors Considered:
Lifting force, repetitive movements, most awkward lifting and lowering position

Body Regions Considered:
Low Back

Type of Jobs Appropriate For:
Manual Material Handling

Type of Jobs Not Appropriate For:
Any non-lifting job

Limitations:
Not concerned with the compression forces at any region within the body
Sole purpose is to predict if the weight lifted is less than the limit set

Who is the Tool Design For:
Professionals trained in ergonomics and general users

Minimal Amount of Training:
4 hours

Studies That Provide Evidence of Validation of the Tool:
None currently found in literature

Electronic Version:

Reference of Peer-Reviewed Publication:
None currently found in literature

Industries and Jobs Where Tool Has Been Applied:
General manufacturing, construction, and healthcare

Is Tool Copyrighted:
No
Instructional or Supplemental Information:
None currently found in literature

Equipment Needed to Use Tool:
None

Time Required Analyzing Typical Job:
<1 hour